Читаем Системное программирование в среде Windows полностью

Параметр hHeap должен указывать на кучу, созданную посредством вызова функции HeapCreate. Будьте внимательны и следите за тем, чтобы случайно не уничтожить кучу процесса, заданную по умолчанию (дескриптор которой получают с помощью функции GetProcessHeap). В результате уничтожения кучи освобождается область виртуального адресного пространства и физическая область сохранения файла подкачки. Разумеется, правильно спроектированная программа должна уничтожать кучи, необходимости в которых больше нет.

Помимо всего прочего, уничтожение кучи позволяет быстро освободить память, занимаемую структурами данных, избавляя вас от необходимости отдельного уничтожения каждой из структур, однако экземпляры объектов C++ уничтожены не будут, поскольку их деструкторы при этом не вызываются. Применение операции уничтожения кучи имеет следующие положительные стороны:

1. Отпадает необходимость в написании программного кода, обеспечивающего обход структур данных.

2. Отпадает необходимость в освобождении памяти, занимаемой каждым из элементов, по отдельности.

3. Система не затрачивает время на обслуживание кучи, поскольку отмена распределения памяти для всех элементов структуры данных осуществляется посредством единственного вызова функции. 

Функции библиотеки С используют только одну кучу. В силу этого иметь дело с чем-либо, напоминающим дескрипторы куч Windows, в данном случае не приходится.

В UNIX адресное пространство процесса может быть увеличено с помощью функции sbrk, однако эта функция не является диспетчером памяти общего назначения.

При неудачных попытках распределения памяти в UNIX сигналы не генерируются, поэтому в программах должна быть предусмотрена явная проверка значений возвращаемых указателей.

<p>Управление памятью кучи</p>

Для получения блока памяти из кучи следует указать дескриптор области памяти кучи, размер блока и некоторые флаги. 

LPVOID НеарАllос(HANDLE hHeap, DWORD dwFlags, SIZE_T dwBytes)

Возвращаемое значение: в случае успешного выполнения — указатель на распределенный блок памяти, иначе — NULL (если только не была указана генерация исключения). 

Параметры

hHeap — дескриптор кучи, из которой должен быть распределен блок памяти. Этот дескриптор должен быть предоставлен либо функцией GetProcessHeap, либо функцией HeapCreate.

dwFlags — может объединять следующие флаги:

• HEAP_GENERATE_EXCEPTIONS и HEAP_NO_SERIALIZE: эти флаги имеют тот же смысл, что и в случае функции HeapCreate. Первый флаг игнорируется, если он был установлен функцией кучи HeapCreate, но активизирует исключения для каждого отдельного вызова функции НеарАllос, даже если функцией HeapCreate флаг HEAP_GENERATE_EXCEPTIONS и не был задан. При распределении памяти из кучи процесса второй флаг использовать не следует.

• HEAP_ZERO_MEMORY: этот флаг указывает, что распределенная память будет инициализирована значениями 0; если этот флаг не установлен, содержимое памяти является неопределенным.

dwBytes — размер блока памяти, который должен быть распределен. Для нерастущих куч значение этого параметра не должно превышать 0x7FFF8 (приблизительно 0,5 Мбайт). 

Примечание

Как только функция HeapAlloc вернула указатель, вы можете использовать его самым обычным способом; ссылаться после этого на его кучу нет никакой необходимости. Заметьте, что тип данных LPVOID может представлять либо 32-битовый, либо 64-битовый указатель.

Для освобождения блока памяти, распределенного из кучи достаточно вызвать следующую функцию: 

BOOL HeapFree(HANDLE hHeap, DWORD dwFlags, LPVOID lpMem) 

dwFlags — значениями этого параметра должны быть 0 или HEAP_NO_SERIALIZE. Значением параметра lpMem должно быть значение, возвращенное функциями HeapAlloc или HeapReAlloc (описана ниже), а дескриптор hHeap должен быть дескриптором кучи, которой принадлежит освобождаемый блок памяти, указываемый lpMem.

Для повторного распределения блоков памяти с целью изменения их размера используется следующая функция: 

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных