Читаем Системное программирование в среде Windows полностью

Управление динамической памятью в той или иной форме требуется в большинстве программ. Необходимость в этом возникает всякий раз, когда требуется создавать структуры данных, размер которых не может быть определен заранее на стадии создания программы. Типичными примерами динамических структур данных могут служить деревья поиска, таблицы имен и связанные списки.

В Windows предусмотрены гибкие механизмы управления динамической памятью программы. Кроме того, Windows предоставляет средства отображения файлов, которые позволяют ассоциировать файл непосредственно с виртуальным адресным пространством процесса, благодаря чему ОС может управлять любыми перемещениями данных между файлом и памятью, так что программисту вообще не приходится иметь дело с функциями ReadFile, WriteFile, SetFilePointer и другими функциями ввода/вывода.

В случае использования отображения файлов программе удобно сохранять внутренние динамические структуры данных в виде постоянно существующих файлов, а все алгоритмы обработки применять к создаваемой в памяти копии файла. Более того, отображение файлов может значительно ускорить последовательную обработку файлов и предоставляет механизм, обеспечивающий совместное использование областей памяти одновременно несколькими процессами.

Важным специальным случаем отображения файлов и разделения памяти являются динамически компонуемые библиотеки (dynamic linked libraries, DLL), обеспечивающие возможность отображения файлов (обычно, когда они используются только для чтения) на адресное пространство процесса для их выполнения.

В этой главе описывается система управления памятью и функции отображения файлов Windows, что иллюстрируется целым рядом примеров их использования, а также обсуждаются явно и неявно связанные библиотеки DLL.

<p>Архитектура системы управления памятью в Win32 и Win64</p>

Win32 (в данном случае различия между Win32 и Win64 становятся существенными) — это API 32-разрядных ОС семейства Windows. "32-разрядность" проявляет себя при адресации памяти тем, что указатели (LPSTR, LPDWORD и так далее) являются 4-байтовыми (32-битовыми) объектами. Win64 API предоставляет виртуальное адресное пространство гораздо большего объема, и 64-битовые указатели являются естественным результатом эволюции Win32. Тем не менее, о переносимости приложений на платформу Win64 необходимо заботиться отдельно. Настоящее обсуждение будет относиться только к Win32; вопросы миграции приложений на платформу Win64 обсуждаются в главе 16, где также приводятся ссылки на соответствующие источники информации.

Далее, в рамках Win32 у каждого процесса имеется собственное виртуальное адресное пространство объемом 4 Гбайт (232 байт). Разумеется, объем виртуального адресного пространства в Win64 гораздо больше. По крайней мере, половину указанного пространства (2-3 Гбайт; расширение до 3 Гбайт должно производиться во время загрузки) Win32 делает доступной для процесса. Оставшаяся часть виртуального адресного пространства выделяется для совместно используемых данных и кода, системного кода, драйверов и так далее.

Хотя детали описанного распределения памяти и заслуживают интереса, здесь они обсуждаться не будут; прикладные программы используют абстрактные модели памяти, предоставляемые API. С точки зрения программиста ОС просто предоставляет адресное пространство большого объема для размещения кода, данных и других ресурсов. В этой главе мы сосредоточим свое внимание на использовании средств управления памятью в Windows, не заботясь о том, как все это реализуется в ОС. Тем не менее, ниже приводится соответствующий краткий обзор.

<p>Обзор методов управления памятью</p>

Обо всех деталях отображения виртуальных адресов на физические адреса (virtual to physical memory mapping), механизмах страничной подкачки (page swapping) и замещения страниц по запросу (demand paging) и прочих моментах заботится ОС. Эти вопросы подробно обсуждаются в документации по ОС, а также в книге Соломона (Solomon) и Руссиновича (Russinovich) Inside Windows2000. Краткое изложение наиболее существенных сведений приводится ниже:

• Система может располагать сравнительно небольшим объемом физической памяти; на практике для всех систем, кроме Windows XP, необходимый минимум составляет 128 Мбайт, однако в типичных случаях доступные объемы физической памяти оказываются намного большими.[21]

• Каждый отдельный процесс — а таких процессов, как пользовательских, так и системных, может выполняться одновременно несколько — имеет собственное виртуальное адресное пространство, объем которого может значительно превосходить объем доступного физического адресного пространства. Например, емкость виртуального адресного пространства объемом 1 Гбайт, относящегося к одному процессу, в восемь раз превышает емкость физической памяти объемом 128 Мбайт, и таких процессов может быть множество.

• ОС преобразует виртуальные адреса в физические адреса.

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных