Читаем Системное программирование в среде Windows полностью

5.3. Доля накладных издержек при распределении памяти из кучи колеблется в зависимости от используемой версии Windows, что особенно заметно в случае выходящих из употребления версий Windows 9x. Спроектируйте и проведите эксперимент для определения количества блоков памяти фиксированного размера, которые каждая из систем предоставляет в одной куче. Используя SEH для определения того момента, когда распределенными оказываются все блоки, вы значительно упростите программу. Подобным образом ведет себя программа clear.с, находящаяся на Web-сайте книги, если игнорировать часть ее кода, ответственную за явное тестирование ОС. Между прочим, эта программа используется в некоторых тестах по измерению временных характеристик для гарантии того, что данные, полученные в процессе выполнении предыдущего теста, не остались в памяти.

5.4. Путем изменения программы sortFL (программа 5.4) создайте программу sortHP, распределяющую память для буфера, размер которого достаточно велик, чтобы в нем уместился весь файл, и выполните считывание файла в этот буфер. Отображение файла использовать не следует. Сравните производительность обеих программ.

5.5. В программе 5.5 применены указатели типа _base, специфические для Microsoft С. Если ваш компилятор не поддерживает это средство (но в любом случае — просто в качестве упражнения) переделайте программу 5.5, используя для генерации значений базового указателя макрос, массив или иной механизм.

5.6. Напишите программу поиска записей по указанному ключу в файле, проиндексированном с применением программы 5.5. Для этой цели удобно воспользоваться функцией bsearch, входящей в состав библиотеки С.

5.7. Реализуйте программу tail из главы 3, используя отображение файлов.

5.8. Поместите вспомогательные функции ReportError, PrintStrings, PrintMsg и ConsolePrompt в DLL и перекомпонуйте некоторые из программ, с которыми мы работали раньше. Проделайте то же самое с функциями Options и GetArgs, предназначенными, соответственно, для обработки параметров командной строки и аргументов. Важно, чтобы как вспомогательная DLL, так и вызывающая программа использовали также и библиотеку С в виде DLL. Например, в Visual C++ и Visual Studio 6.0 выберите, начав со строки главного меню, следующие команды: Project (Проект), Settings (Параметры), вкладку C/C++, Category (Code Generation) (Категория (Генерация кода)), Use Run-Time Library (Multithreaded DLL) (Использовать библиотеку времени выполнения (многопоточная DLL)). Заметьте, что библиотеки DLL, вообще говоря, должны обеспечивать многопоточную поддержку, поскольку они будут использоваться потоками нескольких процессов. Пример возможного решения содержится в проекте Utilities_3_0, доступном на Web-сайте книги.

5.9. Измените программу 5.7 таким образом, чтобы решение относительно того, какую DLL следует использовать, базировалось на размере файла и конфигурации системы. .LIB-файл здесь не требуется, поэтому продумайте, как отменить его генерацию. Для определения типа файловой системы используйте функцию GetVolumeInformation.

5.10. Создайте дополнительные DLL для функции преобразования из предыдущего упражнения, каждая версия которых использует иную методику обработки файлов, и расширьте вызывающую программу таким образом, чтобы она сама решала, когда и какую версию использовать. 

<p>ГЛАВА 6</p><p>Управление процессами</p>

Процесс (process) представляет собой объект, обладающий собственным независимым виртуальным адресным пространством, в котором могут размещаться код и данные, защищенные от других процессов. В свою очередь, внутри каждого процесса могут независимо выполняться одна или несколько потоков (threads). Поток, выполняющийся внутри процесса, может сама создавать новые потоки и новые независимые процессы, а также управлять взаимодействием объектов между собой и их синхронизацией.

Создавая процессы и управляя ими, приложения могут организовывать параллельное выполнение нескольких задач, обеспечивающих обработку файлов, проведение вычислений или связь с другими системами в сети. Допускается даже использование нескольких процессоров с целью ускорения обработки данных.

В этой главе объясняются основы управления процессами и вводятся; простейшие операции синхронизации, которые будут использоваться на протяжении оставшейся части книги.

<p>Процессы и потоки Windows</p>

Внутри каждого процесса могут выполняться одна или несколько потоков, и именно поток является базовой единицей выполнения в Windows. Выполнение потоков планируется системой на основе обычных факторов: наличие таких ресурсов, как CPU и физическая память, приоритеты, равнодоступность ресурсов и так далее. Начиная с версии NT4, в Windows поддерживается симметричная многопроцессорная обработка (Symmetric Multiprocessing, SMP), позволяющая распределять выполнение потоков между отдельными процессорами, установленными в системе.

С точки зрения программиста каждому процессу принадлежат ресурсы, представленные следующими компонентами:

• Одна или несколько потоков.

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных