Визуализация напряжения – это прямая видеосъемка свечения молекул, реагирующих на изменение электрического потенциала. По правде говоря, эта технология известна уже несколько десятилетий [322]
. Но до сих пор мы могли использовать ее только для изучения импульсов одиночных нейронов у простых беспозвоночных, у пиявок и аплизий, потому что у них есть гигантские нейроны, производящие небольшое количество импульсов [323]. Просто потому, что визуализация напряжения намного менее чувствительна по сравнению с визуализацией кальция; при визуализации напряжения мы пытаемся регистрировать гораздо более быстрые явления – импульсы – и с гораздо, гораздо меньшим количеством химического вещества, которое может светиться в ответ на изменение потенциала. В отличие от химических веществ для визуализации кальция, которые могут заполнять тело нейрона, чувствительные к напряжению люминесцирующие вещества могут находиться только в мембране нейрона, потому что именно там есть перепад потенциала, как мы узнали в начале второй главы. Грубо говоря, количество химического вещества, чувствительного к кальцию, будет пропорционально объему тела нейрона, а чувствительное к напряжению химическое вещество пропорционально только площади его мембраны, что означает намного меньшее его количество и намного большие сложности с детектированием его свечения. Таким образом только действительно гигантские нейроны – с огромной площадью поверхности – могут содержать достаточно чувствительного к напряжению химического вещества, чтобы изменения их потенциала можно было обнаружить по его свечению. И только у беспозвоночных мы можем найти такие гигантские нейроны с телами в десятки микрометров в поперечнике. Только в этих существах мы могли напрямую использовать магию непосредственной видеосъемки импульсов.Все это скоро изменится. В 2019 году произошел ряд прорывов в разработке новых типов люминесцирующих веществ, чувствительных к напряжению, – они светятся намного ярче, изменяют состояние намного быстрее и намного более стабильны. Наконец-то и у млекопитающих стала возможна надежная визуализация электрического потенциала множества отдельных нейронов одновременно [324]
. Теперь все, что нам нужно, – это масштабирование, чтобы постепенно перейти от единиц, как сейчас, к десяткам, сотням, тысячам нейронов.Пока что такое использование визуализации напряжения еще впереди, и оно будет вторым прогнозом, который мы дадим, о типе данных, которые мы сможем получить в будущем. Поскольку мы будем визуализировать потенциал на мембране нейрона, теоретически мы сможем увидеть больше, чем просто импульсы. Мы сможем видеть все мерцания напряжения перед каждым срабатыванием нейрона. Все эти всплески потенциала, созданные его входящими сигналами. Для этого нужны сверхъяркие, сверхбыстрые и сверхстабильные люминесцирующие вещества, и они наверняка появятся. И, наблюдая все эти мерцания, мы сможем увидеть, что именно вызвало импульс. Мы сможем детально проследить весь маршрут от входного всплеска потенциала на синапсе через импульс к всплеску в следующем дендрите, от всплеска к импульсу, от импульса к всплеску и так далее…
Если экспоненциальное развитие регистрации сигналов нейронов пойдет своим чередом, однажды мы сможем записывать каждый импульс, посылаемый каждым отдельным нейроном во всей коре головного мозга мыши. О, это будет счастливый день! Какие чудеса мы увидим, чему научимся! Впрочем, стоп: вообразив себе такое будущее, мы должны остановиться и задать себе вопрос «И что?». Итак, что мы будем делать с этой колоссальной массой данных?
Потому что, продолжая наращивать количество регистрируемых импульсов, улучшаем ли мы наше понимание мозга? Или вместо этого просто фрагментируем наше понимание, закапываясь все глубже и глубже в несущественные детали, соревнуясь друг перед другом в накоплении все большего количества наблюдений и записей, утопая в больших данных?.. [325]
К последнему следует относиться с осторожностью. Потому что, возможно, лучше всего из этого недавнего опыта золотого века нейробиологии мы научились понимать наличие зияющей пропасти между тем, что, как мы думали, мы знаем о работе мозга, и тем, что знаем на самом деле. В нашем путешествии мы видели, как все более глубокое погружение в изучение импульсов открывало для нас много нового о том, как, возможно, работает мозг. О том, как дендриты отдельного нейрона, его дендритное дерево, с умом складывают входящие импульсы. О том, как синапсы, оказывается, намеренно работают ненадежно. О повсеместном распространении темных нейронов и их тайной роли в нашей жизни. Об уровнях, на которых мозг кодирует информацию: не единицы, а группы нейронов; легион, а не отдельный нейрон. О том, что спонтанная активность не является бессмысленным шумом, а имеет целью преодоление ограничений скорости биологических механизмов мозга.