The Air Force wanted the two test planes in only fourteen months. Over the years we had developed the concept of using existing hardware developed and paid for by other programs to save time and money and reduce the risks of failures in prototype projects. I worked an agreement with the Air Force to supply me with the airplane engines. They assigned an expediter named Jack Twigg, a major in the Tactical Air Command, who was cunning and smart. Jack requisitioned six engines from the Navy. He went to General Electric’s jet engine division, did some fast talking to the president and plant manager, got some key people to look the other way while he carted away the six J-85 engines we needed right off their assembly line, and had them shipped in roundabout ways, so that nobody knew the Skunk Works was the final destination. We put two engines in each experimental airplane and had a couple of spares. Jack was a natural at playing James Bond: he ordered parts in different batches and had them shipped using false return addresses and drop boxes.
We begged and borrowed whatever parts we could get our hands on. Since this was just an experimental stealth test vehicle destined to be junked at the end, it was put together with avionics right off the aviation version of the Kmart shelf: we took our flight control actuators from the F-111 tactical bomber, our flight control computer from the F-16 fighter, and the inertial navigation system from the B-52 bomber. We took the servomechanisms from the F-15 and F-111 and modified them, and the pilot’s seat from the F-16. The heads-up display was designed for the F-18 fighter and adapted for our airplane. In all we got about $3 million worth of equipment from the Air Force. That was how we could build two airplanes and test them for two years at a cost of only $30 million. Normally, a prototype for an advanced technology airplane would cost the government three or four times as much.
Only the flight control system was specially designed for Have Blue, since our biggest sweat was aerodynamics. We decided to use the onboard computer system of General Dynamics’s small-wing lightweight fighter, the F-16, which was designed unstable in pitch; our airplane would be unstable in all three axes—a dubious first that brought us plenty of sleepless nights. But we had our very own Bob Loschke, acknowledged as one of the very best onboard computer experts in aerospace, to adapt the F-16’s computer program to our needs. We flew the airplane avionically on the simulator flight control system and kept modifying the system to increase stability. It was amazing what Loschke could accomplish artificially by preempting the airplane’s unstable responses and correcting them through high-powered computers.
The pilot tells the flight control system what he wants it to do just by normal flying: maneuvering the throttle and foot pedals directing the control surfaces. The electronics will move the surfaces the way the pilot commands, but often the system will automatically override him and do whatever it has to do to keep the system on track and stable without the pilot even being aware of it. Our airplane was a triumph of computer technology. Without it, we could not even taxi straight.
In July 1976, we began building the first of two Have Blue prototypes in Building 82, one of our big assembly hangars, the size of three football fields. We had our ownunique method for building an airplane. Our organizational chart consisted of an engineering branch, a manufacturing branch, an inspection and quality assurance branch, and a flight testing branch. Engineering designed and developed the Have Blue aircraft and turned it over to the shop to build. Our engineers were expected on the shop floor the moment their blueprints were approved. Designers lived with their designs through fabrication, assembly, and testing. Engineers couldn’t just throw their drawings at the shop people on a take-it-or-leave-it basis and walk away.
Our senior shop people were tough, experienced SOBs and not shy about confronting a designer on a particular drawing and letting him know why it wouldn’t work. Our designers spent at least a third of their day right on the shop floor; at the same time, there were usually two or three shop workers up in the design room conferring on a particular problem. That was how we kept everybody involved and integrated on a project. My weights man talked to my structures man, and my structures man talked to my designer, and my designer conferred with my flight test guy, and they all sat two feet apart, conferring and kibitzing every step of the way. We trusted our people and gave them the kind of authority that was unique in aerospace manufacturing. Above all, I didn’t second-guess them.
Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев
Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное