Даже простейшие организмы содержат огромное количество разных белков. Так, у бактерии
Каждую из тысяч химических реакций, содействующих развитию и функционированию организма, избирательно запускает особый белок-фермент. Незначительно упрощая, можно сказать, что любой фермент проявляет свою каталитическую активность только на одной, строго определенной стадии метаболизма. Прежде всего, именно своей необычайной избирательностью ферменты отличаются от небиологических катализаторов, используемых в лаборатории или в промышленности. Некоторые из последних чрезвычайно активны – даже в очень малых количествах они способны значительно ускорять различные реакции. Тем не менее по специфичности действия ни один них не может сравниться с самым обычным ферментом.
Эта специфичность проявляется двояко:
1. Каждый фермент катализирует только один тип реакции[15]
.2. Хотя в организме обычно присутствует множество соединений, способных вступать в реакции такого типа, фермент, как правило, активен только в отношении одного из них.
Чтобы прояснить эти положения, рассмотрим несколько примеров. Фермент фумараза катализирует реакцию гидратации фумаровой кислоты в яблочную. Эта реакция обратима; иными словами, тот же самый фермент катализирует дегидратацию яблочной кислоты в фумаровую:
Хотя геометрический изомер фумаровой кислоты – малеиновая кислота – химически способен подвергаться той же реакции гидратации, по отношению к нему фермент совершенно неактивен.
Существуют также два
Будучи зеркальными отражениями друг друга, эти два соединения химически эквивалентны и практически неразличимы с помощью классических химических методов. Тем не менее фермент распознает их без труда.
Так,
а) фермент дегидратирует исключительно L‐яблочную кислоту с образованием исключительно фумаровой кислоты
и
б) из фумаровой кислоты фермент производит исключительно L‐яблочную кислоту, но не D‐яблочную кислоту.
Способность безошибочно различать оптические изомеры – не просто яркая иллюстрация
Во-вторых, согласно общему принципу Кюри о сохранении симметрии, тот факт, что из оптически симметричного соединения (фумаровой кислоты) образуется асимметричное соединение, предполагает, что:
а) именно фермент является «источником» асимметрии; следовательно, он сам должен обладать – и обладает – оптической активностью; и
б) первоначальная симметрия субстрата теряется в процессе его взаимодействия с белком-ферментом. Таким образом, реакция гидратации должна проходить внутри «комплекса», образованного за счет формирования временной связи между ферментом и субстратом; в таком комплексе начальная симметрия фумаровой кислоты будет утрачена.
Концепция «стереоспецифичного комплекса», объясняющего специфичность и каталитическую активность ферментов, имеет первостепенное значение. Мы вернемся к ней после обсуждения других примеров.
Фермент аспартаза, обнаруженный в некоторых бактериях, также действует только на фумаровую кислоту, исключая все остальные соединения, в том числе и ее геометрический изомер – малеиновую кислоту. Реакция «присоединения по двойной связи», катализируемая этим ферментом, аналогична рассмотренной выше. Только на этот раз с фумаровой кислотой соединяется не молекула воды, а молекула аммиака. В результате образуется аспарагиновая кислота:
Аспарагиновая кислота обладает асимметричным атомом углерода; следовательно, она оптически активна. Как и в предыдущем случае, ферментативная реакция дает только один из изомеров – L. Такие изомеры называют природными, поскольку все аминокислоты, входящие в состав белков, принадлежат к левовращающим соединениям.
Таким образом, оба фермента – аспартаза и фумараза – четко различают не только оптические и геометрические изомеры своих субстратов и продуктов, но и молекулы воды и аммиака. Можно сказать, что последние также входят в состав стереоспецифичного комплекса, в рамках которого происходит реакция присоединения, и что в этом комплексе молекулы расположены в строгом порядке одна относительно другой. И специфичность действия, и стереоспецифичность реакции, по всей видимости, являются результатом такого расположения.