Читаем Smart Management полностью

В качестве другого примера можно привести прогнозирование количества обращений к врачу в связи с гриппом на следующей неделе. Для решения этой задачи инженеры Google разработали алгоритм обработки больших данных под названием Google Flu Trends (GFT). Идея заключалась в том, что если люди испытывают симптомы гриппа, они, скорее всего, будут искать в Google информацию о гриппе; информация из этих поисковых запросов должна помочь предсказать распространение гриппа гораздо быстрее, чем это могут сделать любые медицинские организации. Для разработки алгоритма инженеры проанализировали около 50 миллионов поисковых запросов, протестировали сотни миллионов моделей прогнозирования и, выбрав лучшую из них, составили прогноз доли обращений к врачу в связи с гриппом с 2007 по 2015 год. Когда свиной грипп пришел не по сезону, начавшись в марте 2009 года и достигнув пика в октябре того же года, GFT пропустила вспышку. Он постоянно недооценивал ее распространение, поскольку за предыдущие годы он усвоил, что число случаев заражения было высоким зимой и низким летом ( рисунок 2.2 ). В ответ на это алгоритм был усложнен, а количество переменных увеличено с 45 до 160. Этот и последующие изменения не улучшили качество прогнозов, и в 2015 году GFT была закрыта. 27

Прогнозирование еженедельного процента обращений к врачу по поводу гриппа с помощью одной точки данных (эвристика повторяемости) снижает ошибку прогнозирования примерно в два раза по сравнению с алгоритмом больших данных Google Flu Trends (GFT). Средняя абсолютная ошибка для эвристики recency составляет 0,20, а для GFT - 0,38. Это справедливо для всех обновлений GFT и всего временного периода с 2007 по 2015 год. Например, когда летом 2009 года вспыхнул свиной грипп, GFT недооценил процент обращений к врачу в связи с гриппом (пунктирная кривая), в то время как эвристика рецидива (пунктирная кривая) быстро адаптировалась к неожиданной вспышке. Три вертикальные линии указывают на три обновления GFT. Годы означают начало года, то есть "2008" означает 1 января 2008 года. По материалам Katsikopoulos et al. (2022).

Грипп происходит в динамичном, большом мире, где вирусы мутируют, а люди вводят поисковые запросы не только при наличии симптомов, но и из любопытства или по многим другим причинам. Один из способов избежать чрезмерной привязки к прошлому - использовать только самые последние данные и игнорировать остальные. Эвристика рекурсивности опирается только на самую последнюю точку данных, в данном случае на частоту обращений к врачу по поводу гриппа за последнюю неделю.

Эвристика рецидива: Предскажите, что на следующей неделе количество посещений врача в связи с гриппом будет таким же, как и в последний раз.

Опираясь исключительно на самую последнюю точку данных, а не на большие данные, эвристика может быстро адаптироваться к несезонным событиям из-за мутаций и не отвлекаться на нерелевантные причины для выполнения поиска в Интернете, связанного с гриппом. Эвристика рецидива предсказывала грипп стабильно лучше в течение восьми лет, когда тестировался GFT, а также превзошла все ревизии алгоритма больших данных. 28 В целом она уменьшила ошибку предсказания GFT примерно наполовину (рис. 2.2). В условиях нестабильности одна точка данных может дать лучший прогноз, чем большие данные.

Общий урок таков: чтобы не переборщить с подгонкой под прошлое, стремитесь к простоте. Простота означает сокращение числа параметров модели, которые необходимо оценивать по прошлым данным. Эвристика хиатуса имеет только один свободный параметр , а эвристика рецессии вообще не имеет свободного параметра, что делает ее надежной в том смысле, что она не может перестроиться. В условиях неопределенности меньше информации часто оказывается полезнее. Конечно, это не означает, что лучше всего игнорировать всю прошлую информацию. Скорее, это означает, что использование только одного или нескольких критических признаков, таких как хиатус, является эффективной стратегией. В условиях неопределенности обычно существует ∩-образная функция между количеством используемых признаков и точностью прогнозирования. 29

Умные эвристики прозрачны и точны

Прозрачность - важнейшая характеристика правил принятия решений. Правило прозрачно для группы людей, если они могут понять, запомнить, научить и выполнить его. 30 Эвристика хиатуса, например, прозрачна: менеджер может легко понять, донести до слушателей и применить ее. В отличие от этого, если компания приобретает сложный метод машинного обучения, такой как случайный лес, чтобы предсказывать будущий выбор клиентов, менеджеры не смогут понять, как получаются предсказания, и не смогут объяснить их логику другим. Эвристика рекуррентности также прозрачна, в то время как алгоритм больших данных GFT - нет.

Перейти на страницу:

Похожие книги

Практика управления человеческими ресурсами
Практика управления человеческими ресурсами

В книге всемирно известного ученого дан подробный обзор теоретических и практических основ управления человеческими ресурсами. В числе прочих рассмотрены такие вопросы, как процесс управления ЧР; работа и занятость; организационное поведение; обеспечение организации управления трудовыми ресурсами; управление показателями труда; вознаграждение.В десятом издании материал многих глав переработан и дополнен. Это обусловлено значительным развитием УЧР: созданием теории и практики управления человеческим капиталом, повышенным вниманием к роли работников «передней линии», к вопросам разработки и внедрения стратегий УЧР, к обучению и развитию персонала. Все эти темы рассмотрены в новых или существенно переработанных главах. Также в книге приведено много реальных примеров из практики бизнеса.Адресовано слушателям программ МВА, аспирантам, студентам старших курсов, обучающимся по управленческим специальностям, а также профессиональным менеджерам и специалистам по управлению человеческими ресурсами.

Майкл Армстронг

Деловая литература / Деловая литература / Управление, подбор персонала / Финансы и бизнес
Наемные работники: подчинить и приручить
Наемные работники: подчинить и приручить

Сергей Занин — предприниматель, бизнес-тренер и консультант с многолетним опытом. Руководитель Пражской школы бизнеса, автор популярных книг «Бизнес-притчи», «Как преодолеть лень, или Как научиться делать то, что нужно делать», «Деньги. Как заработать и не потерять».Благодаря его книгам и тренингам тысячи людей разобрались в собственных амбициях, целях и трудностях, превратили размытые желания «сделать карьеру», «стать успешным», «обеспечить семью», «реализовать себя» в ясную программу последовательных действий.В новой книге С. Занина вы найдете ответы на вопросы:Почему благие намерения хозяев вызывают сопротивление персонала?Как сократить срок окупаемости работников?Почему кнут эффективнее пряника?Как платить словами вместо денег?Есть ли смысл в программах «командостроительства»?Чем заняты работники, когда их не видит хозяин?Как работники используют слабости хозяина?Почему владелец бизнеса всегда умнее своих работников?К какому типу хозяина или работника вы относитесь?Суждения, высказанные в книге, могут вызвать как полное одобрение, так и неприязнь к автору. Это зависит от того, кем сегодня является читатель — наемным сотрудником или владельцем бизнеса.Сайт Сергея Занина — www.zanin.ru

Сергей Геннадьевич Занин , Сергей Занин

Деловая литература / Карьера, кадры / Маркетинг, PR / Управление, подбор персонала / Финансы и бизнес