Читаем Сочинения в двух томах. Том 1 полностью

Таким образом, нет ничего среднего между допущением по крайней мере возможности неделимых точек и отрицанием их идеи; последний принцип и лежит в основании второго ответа на вышеизложенный аргумент. Было высказано мнение[22], что хотя невозможно представить длину без всякой ширины, однако с помощью абстракции без разделения мы можем рассматривать первую, не принимая в расчет второй, точно так же как мы можем думать о длине пути между двумя городами, не обращая внимания на его ширину. Длина неотделима от ширины как в природе, так и в наших мыслях; но это не исключает ни частичного их рассмотрения, ни объясненного выше различения разумом.

Опровергая этот ответ, я не стану опираться на уже в достаточной степени выясненный мною аргумент: если ум не может достигнуть минимума в своих идеях, то его способность [представления] должна была бы быть бесконечной, чтобы он мог охватить бесконечное число частей, из которых состояла бы его идея любого протяжения. Я постараюсь теперь найти новые нелепости в этом рассуждении.

Поверхность ограничивает тело, линия — поверхность, точка — линию; но я утверждаю, что, если бы идеи точки, линии или поверхности не были неделимы, мы вовсе не могли бы представить этих ограничений. Предположим, что эти идеи бесконечно делимы, и пусть затем воображение постарается остановиться на идее последней поверхности, линии или точки; оно тотчас заметит, что идея эта распадается на части; остановившись же на последней из этих частей, оно тотчас потеряет точки опоры в силу нового деления и т. д. in infinitum без малейшей возможности дойти до заключительной идеи. Все это количество делений так же мало приближает его к последнему делению, как и первая идея, им образованная. Каждая частица ускользает от схватывания благодаря новому делению, точно ртуть, которую мы пытаемся схватить. Но поскольку фактически должно существовать нечто ограничивающее идею каждого конечного количества и поскольку сама эта ограничивающая идея не может состоять из частей, или более подчиненных идей, иначе последняя из ее частей ограничивала бы собой данную идею и т. д., это и есть ясный довод в пользу того, что идеи поверхностей, линий и точек не допускают деления: идеи поверхностей — по отношению к глубине, идеи линий — по отношению к ширине и глубине, а идеи точек — по отношению ко всякому измерению.

Сила этого аргумента столь чувствовалась схоластиками, что некоторые из них утверждали, будто природа примешала к тем частицам материи, которые делимы до бесконечности, некоторое число математических точек с целью ограничения тел; другие же обходили силу этого рассуждения с помощью массы непонятных ухищрений и различений. И те и другие противники одинаково признают себя побежденными. Тот, кто прячется, столь же очевидно признает превосходство своего врага, как и тот, кто прямо сдает свое оружие.

Итак, определения математиков, по-видимому, подрывают мнимые доказательства; если у нас есть соответствующая этим определениям идея неделимых точек, линий и поверхностей, то и существование их, несомненно, возможно; если же у нас нет такой идеи, то мы вовсе не можем представить себе ограничение какой-либо фигуры, а без такого представления не может быть и геометрического доказательства.

Но я иду дальше и утверждаю, что ни одно из указанных доказательств недостаточно веско для того, чтобы установить такой принцип, каким является принцип бесконечной делимости, и это потому, что в применении к столь малым объектам доказательства эти оказываются, собственно, недоказательствами, будучи построены на неточных идеях и небезукоризненно истинных правилах. Когда геометрия решает что-либо относительно соотношений количества, мы не должны ожидать особой точности: ни одно из ее доказательств не достигает таковой; она берет измерения и соотношения фигур верно, но грубо и с некоторой вольностью. Ошибки ее никогда не бывают значительными, да она бы и вообще не ошибалась, если бы не стремилась к столь абсолютному совершенству.

Прежде всего я спрошу математиков, что они подразумевают, когда говорят, что одна линия или поверхность равна, больше или меньше другой? Пусть ответит на это любой из них независимо от того, к какой секте он принадлежит и придерживается ли он теории, согласно которой протяжение состоит из неделимых точек или же из количеств, делимых до бесконечности. Вопрос этот приведет в смущение сторонников той и другой теории.

Перейти на страницу:

Все книги серии Философское наследие

Опыты, или Наставления нравственные и политические
Опыты, или Наставления нравственные и политические

«Опыты, или Наставления нравственные и политические», представляющие собой художественные эссе на различные темы. Стиль Опытов лаконичен и назидателен, изобилует учеными примерами и блестящими метафорами. Бэкон называл свои опыты «отрывочными размышлениями» о честолюбии, приближенных и друзьях, о любви, богатстве, о занятиях наукой, о почестях и славе, о превратностях вещей и других аспектах человеческой жизни. В них можно найти холодный расчет, к которому не примешаны эмоции или непрактичный идеализм, советы тем, кто делает карьеру.Перевод:опыты: II, III, V, VI, IX, XI–XV, XVIII–XX, XXII–XXV, XXVIII, XXIX, XXXI, XXXIII–XXXVI, XXXVIII, XXXIX, XLI, XLVII, XLVIII, L, LI, LV, LVI, LVIII) — З. Е. Александрова;опыты: I, IV, VII, VIII, Х, XVI, XVII, XXI, XXVI, XXVII, XXX, XXXII, XXXVII, XL, XLII–XLVI, XLIX, LII–LIV, LVII) — Е. С. Лагутин.Примечания: А. Л. Субботин.

Фрэнсис Бэкон

Европейская старинная литература / Древние книги

Похожие книги

После
После

1999 год, пятнадцать лет прошло с тех пор, как мир разрушила ядерная война. От страны остались лишь осколки, все крупные города и промышленные центры лежат в развалинах. Остатки центральной власти не в силах поддерживать порядок на огромной территории. Теперь это личное дело тех, кто выжил. Но выживали все по-разному. Кто-то объединялся с другими, а кто-то за счет других, превратившись в опасных хищников, хуже всех тех, кого знали раньше. И есть люди, посвятившие себя борьбе с такими. Они готовы идти до конца, чтобы у человечества появился шанс построить мирную жизнь заново.Итак, место действия – СССР, Калининская область. Личность – Сергей Бережных. Профессия – сотрудник милиции. Семейное положение – жена и сын убиты. Оружие – от пистолета до бэтээра. Цель – месть. Миссия – уничтожение зла в человеческом обличье.

Алена Игоревна Дьячкова , Анна Шнайдер , Арслан Рустамович Мемельбеков , Конъюнктурщик

Фантастика / Приключения / Приключения / Фантастика: прочее / Исторические приключения