Читаем Сочинения в двух томах. Том 1 полностью

Можно применить то же рассуждение к кривым и прямым линиям. Для чувств нет ничего более очевидного, чем различие между кривой и прямой линиями, и нет таких идей, которые нам легче было бы образовать, чем идеи этих объектов. Но как бы легко мы ни образовывали эти идеи, невозможно дать такое их определение, которое установило бы между ними точные границы. Когда мы проводим линии на бумаге или на любой непрерывной поверхности, то существует известный порядок, в котором эти линии должны проходить от одной точки к другой, чтобы произвести полное впечатление кривой или прямой; но этот порядок совершенно неизвестен нам, и мы не замечаем ничего, кроме общего вида линий. Таким образом, даже с помощью теории неделимых точек мы можем составить лишь отдаленное представление о каком-то неизвестном образце этих объектов. С помощью же теории бесконечной делимости мы не можем достигнуть даже и этого, но должны ограничиваться лишь общим видом в качестве того правила, с помощью которого мы определяем кривизну и прямоту линий. Но хотя мы не можем ни дать совершенного определения этих линий, ни указать точного способа различения одной из них от другой, это не мешает нам исправлять свое первоначальное общее наблюдение путем более точного его рассмотрения и сравнения с некоторым правилом, в справедливости которого благодаря повторным испытаниям мы более уверены. Именно с помощью такого исправления и продолжения того же самого действия ума, даже когда у нас нет на то оснований, мы образуем смутную идею совершенного образца этих линий, не будучи в состоянии ни объяснить, ни понять его.

Правда, математики утверждают, будто они дают точное определение прямой линии, когда говорят, что она есть кратчайшее расстояние между двумя точками. Но во-первых, замечу я, это скорее указание на одно из свойств прямой линии, чем ее точное определение. Я спрошу кого угодно: разве при упоминании о прямой линии вы не думаете немедленно о некотором определенном внешнем виде и не совершенно ли случайно вы рассматриваете при этом упомянутое свойство? Прямую линию можно представить саму по себе, тогда как указанное определение непонятно без сравнения данной линии с другими, которые мы представляем себе более протяженными. В обыденной жизни считается общепризнанным правилом, что самый прямой путь всегда самый краткий; но [говорить] так было бы столь же глупо, как и утверждать, что кратчайший путь всегда есть кратчайший, если бы наша идея прямой линии не была отлична от идеи кратчайшего пути между двумя точками.

Во-вторых, я повторю то, что уже доказано мной, а именно что у нас нет точной идеи не только о прямой и кривой линиях, но и о равенстве и неравенстве, о более кратком и более долгом и что, следовательно, ни одна из них не может дать нам совершенного образца для других. Точная идея никогда не может быть построена на чем-то смутном и неопределенном.

К идее плоской поверхности так же мало приложим точный образец, как и к идее прямой линии, и у нас нет другого способа различения такой поверхности, кроме [рассмотрения] ее общего вида. Напрасно математики представляют, будто плоская поверхность образуется путем непрерывного передвижения (flowing) прямой линии. На это тотчас можно возразить, что паша идея поверхности так же независима от этого способа образования поверхности, как наша идея эллипса от идеи конуса; что идея прямой линии не точнее идеи плоской поверхности; что прямая линия может передвигаться неправильно и образовать таким образом фигуру, совершенно отличную от плоской поверхности, и что в силу этого мы должны предполагать ее передвигающейся вдоль двух прямых линий, параллельных друг другу, и в той же плоскости, но это такое описание, которое объясняет вещь с помощью ее самой, т. е. вращается в замкнутом кругу.

Перейти на страницу:

Все книги серии Философское наследие

Опыты, или Наставления нравственные и политические
Опыты, или Наставления нравственные и политические

«Опыты, или Наставления нравственные и политические», представляющие собой художественные эссе на различные темы. Стиль Опытов лаконичен и назидателен, изобилует учеными примерами и блестящими метафорами. Бэкон называл свои опыты «отрывочными размышлениями» о честолюбии, приближенных и друзьях, о любви, богатстве, о занятиях наукой, о почестях и славе, о превратностях вещей и других аспектах человеческой жизни. В них можно найти холодный расчет, к которому не примешаны эмоции или непрактичный идеализм, советы тем, кто делает карьеру.Перевод:опыты: II, III, V, VI, IX, XI–XV, XVIII–XX, XXII–XXV, XXVIII, XXIX, XXXI, XXXIII–XXXVI, XXXVIII, XXXIX, XLI, XLVII, XLVIII, L, LI, LV, LVI, LVIII) — З. Е. Александрова;опыты: I, IV, VII, VIII, Х, XVI, XVII, XXI, XXVI, XXVII, XXX, XXXII, XXXVII, XL, XLII–XLVI, XLIX, LII–LIV, LVII) — Е. С. Лагутин.Примечания: А. Л. Субботин.

Фрэнсис Бэкон

Европейская старинная литература / Древние книги

Похожие книги

После
После

1999 год, пятнадцать лет прошло с тех пор, как мир разрушила ядерная война. От страны остались лишь осколки, все крупные города и промышленные центры лежат в развалинах. Остатки центральной власти не в силах поддерживать порядок на огромной территории. Теперь это личное дело тех, кто выжил. Но выживали все по-разному. Кто-то объединялся с другими, а кто-то за счет других, превратившись в опасных хищников, хуже всех тех, кого знали раньше. И есть люди, посвятившие себя борьбе с такими. Они готовы идти до конца, чтобы у человечества появился шанс построить мирную жизнь заново.Итак, место действия – СССР, Калининская область. Личность – Сергей Бережных. Профессия – сотрудник милиции. Семейное положение – жена и сын убиты. Оружие – от пистолета до бэтээра. Цель – месть. Миссия – уничтожение зла в человеческом обличье.

Алена Игоревна Дьячкова , Анна Шнайдер , Арслан Рустамович Мемельбеков , Конъюнктурщик

Фантастика / Приключения / Приключения / Фантастика: прочее / Исторические приключения