Что касается прочих действий, то они легко производятся при том способе их понимания, о котором мы говорили. Однако нужно объяснить, как должно подготовлять их термины, ибо хотя мы и свободны, впервые исследуя какую-либо трудность, представлять ее термины в виде линий или прямоугольников и не применять к ним никаких других фигур, как об этом говорилось уже в правиле XIV, но тем не менее в процессе действия часто бывают случаи, когда какой-либо прямоугольник, после того как он был произведен умножением двух линий, вскоре для другого действия требуется понимать как линию; или еще, когда один и тот же прямоугольник либо линию, произведенные сложением либо вычитанием, вскоре оказывается нужным понимать как другой прямоугольник, обозначенный вверху линией, которая должна его разделить.
Следовательно, здесь важно объяснить, как всякий прямоугольник может быть преобразован в линию или, наоборот, линия или также прямоугольник — в другой прямоугольник с обозначенной стороной. Это легко могут делать геометры, лишь бы они замечали, что всякий раз, когда мы, как здесь, составляем из линий какой-либо прямоугольник, мы всегда разумеем прямоугольник, одна сторона которого является длиной, принятой нами за единицу. Таким образом, вся эта задача сводится к положению: по данному прямоугольнику построить другой, равный ему, на данной стороне.
Хотя это действие привычно даже для тех, кто только что начинает заниматься геометрией, тем не менее я хочу его объяснить, чтобы меня не упрекали в каких-либо упущениях.
Наглядный смысл математических операций, как его излагает Декарт, может показаться тривиальным. Но именно эта тривиальность важна для Декарта. Он хочет показать, что все наши сложные рассуждения можно привести к такой простой форме, которая может показаться настолько тривиальной, что не оставит места для сомнений и заблуждений. Этой цели служит и простая математическая символика, которая для современного человека привычна, но для первых читателей декартова трактата была новой.
Трактат остался неоконченным. Декарт остановился на 21-м правиле, хотя планировал описать 36. В первых двенадцати правилах Декарт представил все, что помогает сделать использование рассудка более легким. В следующих двенадцати он объясняет, как следует находить неизвестное решение вопросов, которые совершенно понятны. Наконец, последние двенадцать правил Декарт планировал посвятить разбору несовершенных и запутанных вопросов.
Однако и написанного вполне достаточно, чтобы понять хоть мысли Декарта. Судя по заглавиям трех последних правил, Декарт собирался объяснить, как можно находить неизвестное на примере решения простых математических уравнений.
Декарт стремится к определенности и простоте, которые не оставляли бы места заблуждениям. Любое искаженное или неправильное истолкование простых истин неизбежно влечет усложнение их интерпретации. Поэтому следование простым правилам руководства для ума позволяет избежать заблуждения. Математика дает возможность представить эти правила в максимально наглядной форме.