Читаем Социальная психология знания полностью

• данные имитационной модели (справа), полученные в момент модельного времени t = 25, когда характер зависимости, изображенной на рисунке 2, не меняется в течение более 10 тактов. Ниже, при расчетах параметров модели, рассматриваются данные на этом такте времени.

Визуально на рисунке 2 мы можем отметить наличие роста мат. ожидания и дисперсии Di при росте значения Ii. Оценим статистически степень влияния фактора Ii на Di отдельно по данным для стран из (Lynn, Vanhanen, 2002) и отдельно по данным, полученным в имитационной модели.


Рис. 2. Иллюстрация данных Ii и Di, полученных из (Lynn, Vanhanen, 2002) (слева) и имитационной модели (справа)


Для оценки степени влияния Ii на Di посредством однофакторного дисперсионного анализа проверим наличие статистической зависимости показателя Di от уровней фактора Ii (групп различных значений) (Кобзарь, 2006). Разобьем значения Ii на три равные непересекающиеся группы (три уровня фактора Ii: «низкий», «средний» и «высокий»), сформируем три выборки значений Di для соответствующего уровня фактора Ii. Рассчитаем уровень значимости p гипотезы Н0:

«Все три выборки принадлежат одной генеральной совокупности или разным генеральным совокупностям с равными средними арифметическими» (если гипотеза H0 неверна, то параметр Ii оказывает существенное влияние на Di).

Уровень значимости p есть вероятность необоснованно (ошибочно) отвергнуть (считать неверной) гипотезу H0. Проведем расчеты отдельно для данных из работы Линна и для данных, полученных из имитационной модели.

Анализ данных из работы Линна показывает, что вероятность необоснованного отклонения нулевой гипотезы крайне мала: 9,44 .10–9 (см. таблицу 1). Следовательно с большой степенью уверенности (1 – p 1) можно утверждать, что значения параметра Di зависят от значений параметра Ii на основе данных, собранных в (Lynn, Vanhanen, 2002).


Таблица 1[5]


Оценим характер влияния Ii на Di. На рисунке 3 проиллюстрируем результат обработки данных из (Lynn, Vanhanen, 2002) в виде графика box plot («ящик с усами»). На этом рисунке вдоль оси Ох размещены три уровня фактора Ii: «низкий», «средний» и «высокий» в соответствующем порядке. Для каждого из трех уровней фактора Ii нарисован «ящик с усами» (фигура синего цвета – «ящик», пунктирные вертикальные прямые – «усы»). Горизонтальная линия («талия» у ящика) обозначает медиану выборки значений параметра Di, соответствующих уровню фактора Ii («низкий», «средний» и «высокий»). Как видно из рисунка 3, уровням фактора Ii соответствуют следующие значения медианы Di: «низкий» – 0,017, «средний» – 0,065, «высокий» – 0,2. Нижняя и верхняя границы каждого из ящиков иллюстрируют первую и третью квантили q1 и q3 для выборки Di соответственно[6]. Длина усов каждого из ящиков определяются значениями: нижняя – 9-й процентили, верхняя – 91-й процентили. Данные, выходящие за пределы усов (выбросы), отображаются на графике в виде крестиков.


Рис. 3. Box plot для значений Di при соответствующем уровне фактора Ii, полученных из (Lynn, Vanhanen, 2002)


На основе анализа рисунка 3 можно сделать выводы:

1. С ростом значения Ii растет медиана значений Di.

2. С ростом значения Ii увеличиваются как значения квантилей q1, q3, 9-й и 91-й процентили, так и расстояние между ними, т. е. увеличивается разброс значений Di.

3. Распределение значений Di в выборке становится более симметричным относительно своей медианы с ростом Ii.

Приведем результаты аналогичных процедур обработки для данных, полученных в имитационной модели (таблица 2, рисунок 4).


Таблица 2[7]


Так же, как и в случае данных из (Lynn, Vanhanen, 2002), вероятность необоснованного отклонения гипотезы Н0 весьма мала, 7,59.10–10 (см. таблицу 2). Следовательно, так же как и в предыдущем случае, с большой степенью уверенности (1 – p 1) можно утверждать, что значения параметра Di, полученные с помощью имитационной модели, зависят от значений параметра Ii. Оценим характер этого влияния, используя график box plot для данных имитационной модели (см. рисунок 4).


Рис. 4. Box plot для значений Di при соответствующем уровне фактора Ii, полученных из имитационной модели (справа – увеличение картинки «ящика с усами» для уровня фактора Ii «низкий» и «средний»)


Как видно из рисунка 4, трем уровням фактора Ii соответствуют следующие значения медианы Di: «низкий» – 0,03, «средний» – 0,59, «высокий» – 0,73.

На основе рисунка 4 можно сделать вывод: с ростом значения Ii растет медиана значений Di.

Перейти на страницу:

Похожие книги

Шопенгауэр как лекарство
Шопенгауэр как лекарство

Опытный психотерапевт Джулиус узнает, что смертельно болен. Его дни сочтены, и в последний год жизни он решает исправить давнюю ошибку и вылечить пациента, с которым двадцать лет назад потерпел крах. Филип — философ по профессии и мизантроп по призванию — планирует заниматься «философским консультированием» и лечить людей философией Шопенгауэра — так, как вылечил когда-то себя. Эти двое сталкиваются в психотерапевтической группе и за год меняются до неузнаваемости. Один учится умирать. Другой учится жить. «Генеральная репетиция жизни», происходящая в группе, от жизни неотличима, столь же увлекательна и так же полна неожиданностей.Ирвин Д. Ялом — американский психотерапевт, автор нескольких международных бестселлеров, теоретик и практик психотерапии и популярный писатель. Перед вами его последний роман. «Шопенгауэр как лекарство» — книга о том, как философия губит и спасает человеческую душу. Впервые на русском языке.

Ирвин Ялом

Психология и психотерапия / Проза / Современная проза / Психология / Образование и наука