«Итак, стратегия “штанги”. Сейчас я расскажу о ее применении в реальной жизни. Эту стратегию я использовал, будучи трейдером, а суть ее такова. Вы понимаете, что ошибки прогнозирования могут вам дорого обойтись и что методы оценки рисков несовершенны, следовательно, вам нужна стратегия либо предельно консервативная, либо предельно дерзкая, а не серединка на половинку. Не стоит вкладывать средства в проекты “со средним уровнем риска” (откуда вам знать, что он средний? поверить “экспертной” тусовке?). Лучше вложите 85–90 процентов капитала в максимально безопасные ценные бумаги, скажем, в казначейские векселя, это ведь финансовые векселя правительства – стабильнее их не бывает ничего. А 10–15 процентов вложите во что-нибудь по-настоящему рискованное, предпочтительно в венчурное предприятие. (Только уж постарайтесь сделать как можно больше таких “микровложений”; не идите на поводу у одного-единственного приглянувшегося вам Черного лебедя. Чем больше мелких вложений, тем выше шансы выигрыша. Даже венчурные предприниматели становятся жертвами искажения нарратива, попадая в плен двух-трех историй, в которых им видится “смысл”; в результате они недостаточно дробят свои капиталы. Если венчурные предприятия процветают, то вовсе не благодаря историям, засевшим в головах их владельцев, а потому, что они открыты для незапланированных, редких событий)»
[21].
Но здесь Талеб не опровергает закон нормального распределения, а лишь подтверждает другую форму проявления Закона Гармонии. Он отказывается вкладывать средства в «среднерисковые» акции не потому, что они являются действительно среднерисковыми. А потому, что он не верит, что они являются среднерисковыми. И в итоге его совет лежит в русле Правила Равновесия Закона Гармонии: равновесие между двумя крайностями по риску. А теория фракталов, которой он поет дифирамбы, является выражением всего лишь Степенного Правила Закона Гармонии, о котором пойдет речь дальше.
Кривая Гаусса (колокол) является одним из проявлений Нормального Правила, хотя и самым главным. Другие его проявления в математике – это S-образная кривая и синусоида. S-образная кривая представляет собой половину кривой Гаусса, а синусоида составляется из нескольких «колоколов».