Согласно иллюстрации 1, для этого способа необходимо наметить разумный ряд точек, например, O
1 O2, O3 и т. д. внутри прямого стержня, или массы М, соответственно, на расстояниях r1, r2, r3 и т. д. от оси вращения О и вычислить квадратный корень среднего квадрата этих расстояний. Пусть величина Rg обозначает радиус инерции [массы], тогда ее фактическая скорость при n оборотах в секунду будет равна Ve = 2πrRgп, а кинетическая энергия Е = ½MVe² = ½M(2πrRgn)².
Ил. 2. В этом случае масса М, вращающаяся со скоростью n оборотов в секунду вокруг оси О, разделена на множество элементов (секторов), или малых частей, на различных радиусах от О. Зная кинетическую энергию каждой части, легко определить кинетическую энергию всей массы путем сложения отдельных величин
На иллюстрации 2 масса М, совершающая п оборотов в секунду вокруг оси О
под прямым углом к плоскости бумаги, разделена на множество элементов (секторов), или малых частей; наиболее удобны очень тонкие концентрические пластины, например, l1, l2, l3 и т. д. на расстояниях r1, r2, r3 и т. д. от О. Поскольку кинетическая энергия каждой части равна половине произведения ее массы и квадрата скорости, сумма всех этих энергий составных частейE
= ½ΣmV² = ½m1V12 + ½m2V22 + ½m3V32 +… =½m
1(2πr1n)² + ½m2(2πr2n)² + ½m3(2πr3n)² +…
Ил. 3. Иная форма выражения энергии вращающегося тела может быть получена путем определения его момента инерции. При этом масса М разделена на мельчайшие части m1
, m2, m3 и т. д. Сумма произведений этих масс на квадраты их расстояний есть момент инерции, который, в зависимости от угловой скорости, составляет кинетическую энергию Е
Иная форма выражения энергии вращающегося тела может быть получена путем определения его момента инерции. С этой целью масса М (ил. 3), вращающаяся со скоростью п оборотов в секунду вокруг оси О
, разделена на мельчайшие части, обозначаемые m1, m2, m3 и т. д., соответственно на расстояниях r1, r2, r3 и т. д. от вышеупомянутой оси. Сумма произведений всех этих малых масс на квадраты их расстояний есть момент инерции I, и тогда Е = ½Iω², где ω = 2πn есть угловая скорость.Очевидно, что во всех этих случаях есть много моментов, требующих большой точности во всех деталях, но, как правило, на практике достаточно соблюдать очень немногие.
Ил. 4. В этом случае движение разложено на два отдельных компонента — одно поступательное в окрестности О, а другое вращательное — вокруг С. Совокупная кинетическая энергия массы равна сумме этих двух энергий
Еще один способ вычисления кинетической энергии представлен на иллюстрации 4. В этом случае величина I
выводится на основе момента инерции Ie на другой оси, параллельной О и проходящей через центр тяжести С массы М. В соответствии с этим энергия движения Е = ½MV² + ½Ieω² где V есть скорость центра тяжести.Считаю, что всё вышесказанное чрезвычайно важно, так как я замечаю, что корреспонденты, даже те, которые создают впечатление людей, хорошо знакомых с законами механики, не в состоянии провести различие между гипотетическими и физическими истинами, что является существенным фактором в моей аргументации.