Читаем Статьи полностью

Для этого я сошлюсь на иллюстрацию 6, где представлен шар М с радиусом r и с центром С, находящимся на расстоянии R от оси О; шар разделен на две равные части тангенциальной плоскостью pp, как показано, при этом нижняя часть сферы заштрихована для распознавания. Кинетическая энергия шара, при условии, что он совершает n оборотов в секунду вокруг О, определяется согласно первому варианту выражения как E = ½MVe² = ½M(2πRgn)², где M — масса, a Rg — радиус вращательного движения. Но, как говорилось в пояснении к иллюстрации 4, мы также имеем выражение Е = ½MV² + ½Ieω², где V = 2πRn есть скорость центра тяжести С, а Ie — момент инерции шара, находящегося в окрестности параллельной оси, проходящей через С и равный 2/5Мi², так что Е = ½М(2πRn)² + 1/5Мr²(2πn)². Ни одно из этих двух выражений для E не характеризует фактическое состояние тела, но первое, конечно, предпочтительнее, так как передает в сущности идею единого движения вместо двух, из которых одно не имеет основы для существования. Я берусь прежде всего доказать, что не существует вращающего момента, или вращательного усилия, вокруг центра

С, и что кинетическая энергия воображаемого осевого вращения шара в математическом смысле равна нулю. Это приводит к необходимости считать две половины, разделенные тангенциальной плоскостью pp, полностью независимыми одна от другой. Пусть с1 и с2 будут их центрами тяжести, тогда Сc1 = Сc2 = 3/8r. Чтобы определить кинетическую энергию полусфер, мы должны найти их радиусы движения по окружности, что можно сделать, определив моменты инерции Ic1 и Iс2 в окрестности параллельной оси, проходящей через с1 и с2. Можно избежать сложных вычислений, если помнить, что момент инерции любой из полусфер в окрестности оси, проходящей через С, выражается формулой Ic = ½ × 2/5Mr² = 1/5Mr², и поскольку М = 2 т, то Ic
= 2/5mr². Это можно выразить через моменты Ic1 и Iс2, а именно: Ic = Iс1m(3/8r)² = Ic2 + m(3/8r)². Следовательно, Ic1 = Ic2 = Icm(3/8r)² =
2/5mr² — 9/64mr² = 83/320mr². Следуя этому же правилу, можно найти моменты инерции полусфер в окрестности оси, проходящей через центр движения О.

Определяя моменты для верхних и нижних половин шара, соответственно, IO1 и IO2, мы получим IO1 = m(R + 3/8r)² + Iс1 = m(R + 3/8r)² + 83/320mr² и I

O2m(R3/8r)² + Iс2 = m(R3/8r)² + 83/320mr²

Таким образом, для верхней половины сферы радиус движения по окружности



и для нижней половины



Они представляют собой расстояния от центра О, вокруг которых массы полусфер могут концентрироваться, и тогда алгебраическая сумма их энергий, которые полностью относятся к поступательному движению, а энергии осевого вращения при этом равны нулю, будет равна совокупной кинетической энергии шара в целом. Значение этого факта поможет понять ссылка на иллюстрацию 7, в которой две массы, уплотненные до точек, представлены закрепленными на невесомых нитях длиной Rg1 и Rg2, которые специально показаны смещенными, но их следует представлять совпадающими. Можно без труда увидеть, что если обе нити отрезать, в тот же момент массы отлетят по касательной к своим орбитам, при этом угловое движение станет прямолинейным, и не произойдет никакого трансформирования энергии. Теперь давайте узнаем, что произойдет, если две массы жестко соединить, а связующее звено между ними считать невесомым. В этом случае мы придем к фактическому сбою в обсуждаемом вопросе. Очевидно, что пока происходит турбулентное движение и обе массы имеют абсолютно одну и ту же угловую скорость, связующее звено не будет оказывать какого-либо влияния, вокруг общего центра тяжести масс нет ни малейшего поворотного усилия или тенденции к выравниванию энергии между ними. В тот момент, когда нити оборвутся и шары будут отброшены, они начнут вращаться, но, как указывалось выше, это движение ни прибавит, ни убавит аккумулированной энергии. Однако вращение обусловлено не исключительным свойством углового движения, а тем обстоятельством, что тангенциальные скорости отброшенных масс, или частей тела, различны.


Ил. 7. Представленные здесь две массы m и m1 уплотнены и рассматриваются в виде точек, закрепленных на очень легких нитях различной длины. Если обе нити обрезать, а массы рассматривать как слившиеся в одну, никакого вращения вокруг общего центра тяжести не произойдет


Перейти на страницу:

Похожие книги

1968 (май 2008)
1968 (май 2008)

Содержание:НАСУЩНОЕ Драмы Лирика Анекдоты БЫЛОЕ Революция номер девять С места событий Ефим Зозуля - Сатириконцы Небесный ювелир ДУМЫ Мария Пахмутова, Василий Жарков - Год смерти Гагарина Михаил Харитонов - Не досталось им даже по пуле Борис Кагарлицкий - Два мира в зеркале 1968 года Дмитрий Ольшанский - Движуха Мариэтта Чудакова - Русским языком вам говорят! (Часть четвертая) ОБРАЗЫ Евгения Пищикова - Мы проиграли, сестра! Дмитрий Быков - Четыре урока оттепели Дмитрий Данилов - Кришна на окраине Аркадий Ипполитов - Гимн Свободе, ведущей народ ЛИЦА Олег Кашин - Хроника утекших событий ГРАЖДАНСТВО Евгения Долгинова - Гибель гидролиза Павел Пряников - В песок и опилки ВОИНСТВО Александр Храмчихин - Вторая индокитайская ХУДОЖЕСТВО Денис Горелов - Сползает по крыше старик Козлодоев Максим Семеляк - Лео, мой Лео ПАЛОМНИЧЕСТВО Карен Газарян - Где утомленному есть буйству уголок

авторов Коллектив , Журнал «Русская жизнь»

Публицистика / Документальное