Ил. 8. Чтобы понять проблему, представленную на иллюстрации 7, вообразите два ружейных ствола, параллельных один другому. Если одновременно выстрелить двумя шарами, соединенными воображаемым креплением, они будут вращаться вокруг их общего центра тяжести, подтверждая, что Луна обладает только кинетической энергией поступательного движения
Чтобы разобраться в этом и исследовать полученный эффект, представьте себе два ружейных ствола в иллюстрации 8, размещенных параллельно один другому и с осями, разнесенными на расстояние R
g1 и Rg2. Допустим, что два шара одного диаметра, каждый с массой т, выстреливаются из стволов с начальными скоростями V1 и V2, соответственно равными 2πnRg1 и 2πnRg2 как в случаях, уже рассмотренных. Если далее предположить, что в момент вылета из стволов шары будут жестко соединены невесомой кулисой, они будут вращаться вокруг их общего центра тяжести, и в соответствии с концепцией, изложенной в моей предыдущей статье, будет иметь место соотношение
где n
— число оборотов в секунду. Выравнивание скоростей и кинетических энергий шаров будет происходить в этих условиях очень быстро, но у двух небесных тел, связанных гравитационным притяжением, этот процесс может потребовать века. Итак, это турбулентное движение реально и требует энергии, которая, очевидно, должна быть изначально подана и, следовательно, должна снижать скорость шаров в направлении полета на величину, которую можно без труда вычислить. В момент выстрела совокупная кинетическая энергия составляла Е = ½mV1² + ½mV2², что, очевидно, будет равно mV3² где V — фактическая скорость общего центра тяжести, из чего следует, что
Скорость вращения масс, несомненно, составляет V
1 — V2 / 2, а вращательная энергия обоих шаров, которые должны рассматриваться в виде точек, выражается e = m(V1 — V2 / 2). Тогда кинетическая энергия поступательного движения в рассматриваемом направлении полета будет выражаться как
где V
4 = V1 + V2 / 2 есть скорость общего центра тяжести, так что V3 — V4 есть потеря скорости в направлении полета вследствие вращения точек, представляющих массы. Если вместо точек мы будем иметь дело с собственно шарами, их вращательная энергия
где i
— момент инерции каждого шара вокруг собственной оси.Как видите, мы приходим точно к тем же результатам, независимо от того, будет движение прямолинейным или орбитальным. В обоих случаях совокупная кинетическая энергия может быть разделена на две части одного и того же числового значения, но есть существенное различие
. При наличии углового движения осевое вращение является не более чем абстрактной концепцией; в случае же поступательного движения это — несомненное явление.