Читаем Статьи и речи полностью

2. В первом из трёх мемуаров по электричеству и магнетизму — «О фарадеевых линиях силы» [13], прочитанном в 1865 г., Максвелл демонстрировал динамическую аналогию между электростатикой и движением жидкости. Он также утверждал, что ближайшей задачей физики является обеспечить динамическое объяснение наук об электричестве и магнетизме. Во втором мемуаре — «О физических линиях силы» [14], опубликованном в 1861 — 1862 гг., Максвелл вывел знаменитые уравнения поля и электромагнитную теорию света и начал проектируемое динамическое объяснение, заключавшееся в том, что он назвал теорией молекулярных вихрей. В этой теории свойств системы вращающихся сферических ячеек, натянутых подобно шарикам вдоль линий магнитной силы, утверждалось, что эти шарики образуют наблюдаемые свойства магнитного действия. Вращение ячеек заставляет их раздвигаться в боковом направлении и сжиматься в продольном направлении, что в свою очередь создаёт натяжение вдоль линий магнитной силы и одинаковое во всех направлениях давление в плоскости, расположенной под прямым углом к линиям силы. Далее, свойства системы маленьких частичек, движущихся между соседними вихрями, когда их угловые скорости различаются, образуют наблюдаемые свойства электрического действия. Теория молекулярных вихрей, к удовлетворению Максвелла, отвечала условию непротиворечивого представления, но не могла удовлетворить условию независимого доказательства. В третьем мемуаре — «Динамическая теория электромагнитного поля» [9], опубликованном в 1864 г. и в «Электричестве и магнетизме», опубликованном в 1863 г., Максвелл утверждал, что физика пока должна удовлетвориться более скромным достижением — тем, что он называл динамической теорией.

Динамическая теория есть динамическое объяснение в менее полной форме. Она ставит задачей спецификацию материальной системы, которая прежде всего не противоречила бы науке, которая должна быть объяснена и должна обладать такой общностью чтобы избегать деталей, требуемых динамическим объяснением. В заметке «О доказательстве уравнений движения системы со связями» Максвелл рассматривает переход от динамического объяснения к динамической теории, пользуясь слегка отличающимися терминами.

«При формулировке динамических теорий физических наук очень часто бывало на практике, что изобреталась какая-нибудь специальная динамическая гипотеза и затем при помощи уравнений движения из неё выводились определённые результаты. Согласие с этими результатами, как предполагалось, давало определённую степень доказательства в пользу этой гипотезы.

Истинный метод физического объяснения состоит в том, чтобы начать с явлений и вывести из них силы путём прямого применения уравнений движения. Трудность при таком подходе заключалась до сих пор в том, что мы наталкиваемся, по крайней мере во время первых стадий исследования, на столь неопределённые результаты, что не имеем достаточно общих членов для выражения их без введения какого-нибудь понятия, не выводимого строго из наших предпосылок.

Поэтому очень желательно, чтобы люди науки изобрели какой-нибудь метод утверждения, благодаря которому представления настолько точные, насколько они могут быть, могли бы быть доведены до ума и в то же время были бы достаточно общими, чтобы можно было избежать введения неоправданных деталей»10.

А в рецензии для «Nature» на книгу «Натуральная философия» лорда Кельвина, тогда ещё В. Томсона, я П. Г. Тэта Максвелл добавил:

«Но когда мы имеем основание считать, что явления, попадающие в сферу нашего наблюдения, образуют только малую часть того, что действительно происходит в системе, вопрос заключается не в том, какие явления будут результатом гипотезы, что система эта есть система определённого специфического вида, но в том — какова наиболее общая характеристика материальной системы совместной с условием, что движения тех частей системы, которые мы можем наблюдать, суть те же, которые мы на самом деле находим»11.

В электромагнетизме искомая для спецификации материальная система оказалась уравнениями движения, развитыми в 1788 г. Лагранжем в его «Аналитической механике». Законы движения Ньютона и уравнения Лагранжа эквивалентны, но представляют собой разные методы определения движения материальной системы. В заметке об уравнениях движения и в главе по этому вопросу в «Электричестве и магнетизме» Максвелл рассматривает уравнения Лагранжа как с математической, так и с физической точек зрения12. С математической точки зрения исследования Лагранжа сделали возможным сведение законов движения Ньютона, которые необходимо иметь в количестве трёх для каждой частицы материальной системы, к числу, равному числу степеней свободы данной системы. С физической точки зрения исследования Лагранжа позволили перенести описание части механизма из жёсткой системы протяжённых координат в пространстве Декарта к тому, что Максвелл характеризовал как «независимые ведущие колеса13 механизма».

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже