Читаем Статьи и речи полностью

Кельвин и Тэт назвали эти новые координаты, служившие для замены координат Декарта, игнорируемыми координатами; теперь они называются обобщёнными координатами, а изменения их по времени называются обобщёнными скоростями. Для того чтобы применить уравнения Лагранжа к материальной системе, необходимо сначала определить, каковы обобщённые координаты и скорости этой системы, и затем найти, как потенциальная и кинетическая энергии системы зависят от этих величин. Тогда можно определить, удовлетворяет ли система принципу сохранения механической энергии. Этот принцип утверждает, что сумма потенциальной и кинетической энергий материальной системы остаётся постоянной во время движения.

В рецензии на труд Кельвина и Тэта Максвелл объяснил природу динамического объяснения. Объяснил, почему иногда такое объяснение должно быть оставлено, объяснил природу динамической теории и то, как задача динамической теории может быть разрешена применением уравнений Лагранжа. Для иллюстрации Максвелл описал церковный перезвон с определёнными специфическими свойствами.

«В обычном перезвоне каждый колокол имеет один канат, который спускается через отверстие в полу в комнату звонарей. Но представим себе, что каждый канат вместо того, чтобы приводить в действие один колокол, участвует в движении многих частей механизма, и что движение каждого колокола определяется не движением одного только каната, а движением нескольких; далее предположим, что весь этот механизм закрыт и совершенно незнаком людям, стоящим у канатов, которые могут видеть только дыры в потолке над ними»14.

Задача динамического объяснения состоит в том, чтобы выяснить природу механизма в перезвоне на основании наблюдаемых движений канатов. Но так как имеется бесконечное множество решений этой задачи, и так как этот механизм, по определению, недоступен, то такое объяснение тривиально. Оно не может удовлетворить условию независимого доказательства. Задача динамической теории заключается в том, чтобы доказать, не прибегая к недоступному механизму, что наблюдаемое движение канатов совместимо с основными принципами динамики. Решение состоит в определении, применимы ли уравнения Лагранжа к механизму перезвона и остаётся ли сумма потенциальной и кинетической энергий механизма постоянной во время движения. Для того чтобы применить уравнения Лагранжа, прежде всего необходимо установить обобщённые координаты и скорости системы. В задаче о механизме перезвона обобщённые координаты оказываются положениями канатов, а обобщённые скорости — скоростями изменения этих положений. При помощи надлежащей манипуляции с канатами звонари могут определить, как выражаются потенциальная и кинетическая энергии этого механизма в функции обобщённых координат и скоростей15.

История электромагнетизма является в своём роде задачей о перезвоне. Закон Ампера о притяжении и отталкивании между элементами тока и закон Фарадея об электромагнитной индукции соответствуют наблюдаемому движению канатов. Попытка Максвелла дать динамическое объяснение этих законов в его теории молекулярных вихрей соответствует попытке объяснить природу механизма в перезвоне из наблюдаемого движения канатов. Более скромную задачу динамической теории Максвелл описывает в «Электричестве и магнетизме»: «Что я теперь предлагаю сделать — это изучить следствия из допущения, что явление электрического тока — это явление движущейся системы, причём движение передаётся от одной части этой системы к другой силами, природу и законы которых мы даже не пытаемся определить, потому что мы можем исключить эти силы из уравнений движения методом, данным Лагранжем для любой системы со связями»16. Задача применения уравнений Лагранжа к системе электрических цепей упрощается, если она ограничивается цепями, в которых электрическая ёмкость пренебрежимо мала. Для такой системы Максвелл обнаружил, что обобщённые координаты являются совокупностью значений, необходимых для фиксирования положения, формы и размеров каждой цепи; а обобщёнными скоростями являются скорости изменения этих значений вместе с силой тока в каждой цепи; энергия же системы является по форме полностью кинетической17. При помощи такой эмпирической модели Максвелл получил из уравнений Лагранжа законы Ампера и Фарадея в несколько обобщённой форме и доказал, что они совместимы с принципом сохранения механической энергии.

3. В предыдущем рассуждении о вкладе Максвелла и его истолковании этого вклада один пункт нуждается в разъяснении. Максвелл обнаружил, что уравнения Лагранжа являются наиболее общей характеристикой материальной системы, совместимой с наблюдаемым действием электрических токов. Таким образом, его вклад состоял в доказательстве динамической аналогии, хотя в этой аналогии соответствующие свойства были весьма общими. Но Максвелл истолковал свой вклад, как доказательство динамической теории, т. е. как доказательство того, что законы электричества и магнетизма описывают наблюдаемые действия промежуточного механизма, хотя детали этого механизма остаются не уточнёнными.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже