Читаем Статьи и речи полностью

Наличие обычных соотношений напряжение — деформация позволяет воспользоваться некоторыми результатами теории упругости. Для упругой среды со смещением D, для которого расходимость div D равна нулю.


G curl curl

D

∂²D

∂t²

=0,


(1)


где G и ρ, соответственно48a, — модуль сдвига и плотность.

Равновесие имеет место, когда curl D невращателен. Примером может служить цилиндрическое смещение:


D

x

=(y²+z²)

½

,

D

y

=D

z

=0.


Так как curl curl D равно нулю, это — одно из состояний равновесия. Интересным в этом примере является то, что при таком смещении трубки искривляются.

Изолированная изогнутая трубка не остаётся стационарной, потому что кривизна приводит к тому, что скорость на вогнутой стороне трубки оказывается большей, чем на выпуклой, а потому она создаёт соответственно пониженное давление на вогнутой стороне. Эта скорость сначала ускоряет первоначально стационарную трубку по направлению к вогнутой стороне, но как только трубка приобретает скорость, возникает подъёмная сила, которая ускоряет трубку в боковом направлении в сторону движения жидкости на вогнутой стороне. Эта подъёмная сила оказывается достаточно большой, чтобы преодолеть градиент давления поперёк трубки. В результате получится боковое смещение в положении трубки. Это движение имеет трансляционный компонент48b и налагающийся на него вращательный компонент. Последний не создаёт направляющего эффекта в среднем, и мы его игнорируем. Трансляционный компонент этого движения называется дрейфом. Для малых искривлений дрейф пропорционален кривизне (см. приложение 2).

В цилиндрическом смещении жидкость находится в равновесии, так что трубки также должны быть в равновесии. Кривизна трубок, которая приводила бы к дрейфу, если бы трубки были изолированными, должна поэтому компенсироваться структурными изменениями. Форма трубок в деформированном состоянии создаёт микроскопические течения и градиенты давления, которые и нейтрализуют действие кривизны. Это имеет место для любого смещения, для которого как div D, так и curl curl D равны нулю.

Кривизна трубки, которая не сопровождается структурными изменениями и, следовательно, остаётся некомпенсированной, создаёт дрейф. Некомпенсированная кривизна вызывается только дифференциальными вращениями, так как только в случаях движений твёрдого тела получается кривизна, не сопровождаемая структурными изменениями. До тех пор, пока трубки следуют движению жидкости, поведение среды является упругим в классическом смысле; но когда трубки дрейфуют относительно жидкости, уравнение (1) неполно, так как в нём нет учёта дрейфа.

III. Уравнения Максвелла

Теперь мы можем сделать наш описательный анализ среды более определённым. Обозначим прочность на вращение каждой трубки через κ, где 2πκ — циркуляция вокруг трубки. Для указания направления циркуляции введём вектор κ и выберем это направление так, чтобы оно совпадало с пальцами правой руки, охватывающей трубку, а большой палец был бы направлен по κ. Величина κ предполагается одинаковой для всех трубок. Дрейф трубки пропорционален её кривизне; коэффициент пропорциональности (коэффициент дрейфа) обозначим через α. Трубка в нейтральной среде занимает среднее положение; боковое смещение от этого положения обозначим через ξ. Тогда дрейф можно записать в виде 𝑑ξ/𝑑t. Единица длины дрейфующей трубки оказывает на жидкость тягу 2πκρξ, причём эта величина является также подъёмной силой. Плотность трубки обозначим через L. В приложении I показано, что для некоторых целей трубки можно разлагать как векторы; этим упрощением мы теперь и воспользуемся.

Когда трубки разлагаются на их векторные компоненты, то плотность трубки вдоль каждого направления есть ½L так как среднее значение направляющегося косинуса для сферически симметричного распределения равно ½. На рис. 2 элемент среды, первоначально прямолинейный, изогнут смещением D. Вращения элементов 1 и 2, определённые в этих местах, равны ½ curl D, как показано стрелками.

Рис. 2. Элемент объёма, искривлённый при дифференциальном вращении

Кривизна элемента вдоль прямой, перпендикулярной к оси вращения, есть разность во вращениях элементов 1 и 2, делённая на расстояние между ними и, следовательно, она имеет величину ½ curl curl D. Трубка, лежащая внутри куска, с таким вращением, как на рис. 2, смещается в плоскость рисунка и вправо со скоростью ξ, превышающей кривизну в α раз. Дрейфующая трубка единичной длины оказывает на жидкость тягу 2πκρξ в направлении 𝑑ξ/𝑑t×κ, так что эту тягу можно выразить как 2πρ𝑑ξ/𝑑t×κ на единицу длины. Если разложить трубки вдоль curl DD, curl curl и нормально к этим направлениям, то только последняя часть приобретёт некомпенсированную кривизну. Их плотность равна ½L на единицу объёма. Тяга на единицу объёма, создаваемая дрейфом, равна


F

=-2πκρ(α ½ curl curl

D

)(½L)=


=-½πκραL curl curl

D

.


(2)


Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука