Супертрансляция – не новая для физиков идея. Она обсуждалась начиная с 1960-х годов, но прежние обсуждения касались световых лучей на границе пространства-времени, где-то в бесконечности. Теперь, с учетом всего сказанного выше, вернемся к фотону с нулевой энергией. Что еще следует из этого обсуждения? Свет можно рассматривать либо как частицы (фотоны), либо как волны. Если вы видели диаграмму электромагнитного спектра, то помните, как по мере продвижения к “красному краю” спектра, за пределы воспринимаемого человеческим глазом к инфракрасному или радиоизлучению, энергия убывает, а длина волны увеличивается. Продолжайте продвигаться, и энергия упадет до нуля, а длина волны станет настолько большой, что можно считать,
Нечто схожее происходит с частицами на границе черной дыры, только тут речь идет о границе не пространства-времени, а черной дыры. Поскольку все материальные частицы обладают массой и подчиняются закону всемирного тяготения, любая попадающая в черную дыру частица добавляет к ней мягкий гравитон или, может быть, некоторое количество мягких гравитонов. Мягкие фотоны и гравитоны, добавляемые к черной дыре, мы можем считать находящимися на горизонте событий черной дыры. То есть получается своего рода записывающее устройство: мягкие фотоны и гравитоны обладают информацией о том, что происходит в черной дыре, и они остаются жить на горизонте событий. В стокгольмской лекции Хокинг сказал: “Суть в том, что супертрансляции – это голограммы проникших внутрь частиц. Поэтому они содержат всю информацию, которая иначе была бы утрачена”.
Как мы видели, Стромингер обнаружил, что не все состояния с нулевой энергией идентичны: добавление мягкой частицы приводит к изменению состояния. Также и черные дыры не одинаковы, они различаются в зависимости от того, что хранится на их горизонтах, а то, что хранится на горизонте, репрезентирует все то, что упало вовнутрь дыры. Если сравнить две черные дыры, отличающиеся лишь на один мягкий фотон, это все же будут две разные черные дыры. Когда эти дыры испарятся, это тоже произойдет по-разному.
Есть ли какие-либо доказательства в пользу того, что Хокинг, Перри и Стромингер правы? Да, но никто не путешествовал внутрь черной дыры, чтобы это проверить. Перри указывает две возможности[520]
:1. Обнаружение “гравитационной памяти”. Вспомните разговор о детекторах гравитационных волн в главе 19. Когда гравитационная волна проходит либо через LIGO
(на Земле), либо через LISA (предстоит построить в космосе), позиции двух зеркал (LIGO) или двух космических кораблей (LISA) слегка смещаются относительно друг друга. Если после того, как гравитационная волна пройдет, они не вернутся в прежнее положение, это и будет доказательством правоты Хокинга, Перри и Стромингера.2. Корректное вычисление энтропии черной дыры (см. главу 6) в этом новом контексте.
Другие теоретики высказываются осторожно, но заинтересовало это очень многих.
Даже если в итоге окажется, что Хокинг, Перри и Стромингер не сумели решить парадокс исчезновения информации в черной дыре, они расширили понимание роли, которую играют мягкие частицы, и обнаружили тонкие соответствия и симметрии между силами природы. Остается еще такой вопрос: когда что-то падает в черную дыру, сохраняется ли запись
Под конец 2015 года, в декабре, кампания, запущенная Хокингом и другими и направленная на пробуждение в обществе интереса и даже обеспокоенности в связи с развитием искусственного интеллекта, принесла свои плоды: Кембриджский университет объявил о создании центра Леверхульма по изучению будущего интеллекта, где будут исследоваться различные последствия появления ИИ – от исчезновения профессий до выживания человеческого рода в целом.
2016 – дымящийся пистолет