Читаем Сто лет недосказанности: Квантовая механика для всех в 25 эссе полностью

Квантовый аналог этой единственной классической ошибки – случайная замена в кубите состояния «А» на состояние «Б» или наоборот. Но кроме этого с кубитом может случиться что-то совсем другое, не имеющее классического аналога: замена состояния «А плюс Б» на «А минус Б» (это два различных состояния, дальнейшая эволюция которых приведет к различным финальным волновым функциям всей системы){82}.

Мало того, что квантовых ошибок больше, исправление их на первый взгляд кажется невыполнимой задачей. Проблема возникает уже с избыточностью: нельзя создать копию квантового состояния, не разрушив оригинал (теорема о запрете клонирования, упоминавшаяся в предыдущей главе). Поэтому отправить три (да и два) одинаковых состояния вместо одного попросту невозможно. Если этого мало, то есть еще одно обстоятельство, тоже фундаментальное. Нельзя «подглядывать», как идут квантовые вычисления: измерение, выполняемое с целью «проверить, нет ли сбоя», разрушает волновую функцию, и из всех содержавшихся в ней возможностей остается одна – волновая функция коллапсирует, вычислению конец (преждевременный).

Борьба с квантовыми ошибками выглядит проигранной еще до того, как она началась. Поэтому неудивительно, что энтузиазм в отношении квантовых вычислений находился на крайне низком уровне до 1995 г., когда был открыт первый квантовый код для исправления ошибок. На помощь пришла запутанность.

Из состояния одного кубита «a А плюс b Б» (с любыми внутренними числами a и b) можно создать состояние трех кубитов «a (А, А, А) плюс b (Б, Б, Б)». Здесь, во-первых, сохранились те же внутренние числа a и b, во-вторых, видна избыточность, а в-третьих, запрета на создание такого состояния нет – оно не представляет собой трехкратное повторение одного и того же состояния первого кубита, избыточность встроена в него более тонким (если угодно, запутанным) образом.

Для этого, разумеется, нужны два дополнительных кубита – посторонних по отношению к тем, на которых в идеальной ситуации предлагается выполнять вычисление. Про них полезно знать, что их начальное состояние, скажем, «А». Применяя преобразования CNOT к основному кубиту и первому вспомогательному, а затем еще раз к основному и второму вспомогательному, мы из исходного «a А плюс b Б» создаем желаемое «избыточное» состояние «a (А, А, А) плюс b (Б, Б, Б)».

Контрольные измерения затем выполняются таким образом, чтобы отслеживать изменения в состоянии вспомогательных кубитов. Из этих измерений можно сделать заключение о характере случившейся ошибки или о ее отсутствии, и в первом случае определить преобразование (не измерение!), которое надо произвести над «основными» кубитами для ее исправления{83}.

Вопрос сегодняшнего дня – успеваем ли мы бежать впереди накапливающихся ошибок? Для коррекции неизбежных ошибок мы добавляем новые кубиты к тем, которые теоретически необходимы для вычисления, а также выполняем дополнительные преобразования. Они тоже работают не идеально, и требуются дополнительные кубиты для коррекции ошибок, возникающих при коррекции ошибок. Кто кого? Сколько физических кубитов потребуется, чтобы надежно выполнять квантовые вычисления на 1000 идеальных кубитов? Миллион?!

Квантовые вычисления – это остроумный способ использования квантовых законов. Тот факт, что в специальных задачах квантовые компьютеры могут быть радикально эффективнее обычных цифровых компьютеров, можно считать свидетельством глубины квантовых ресурсов. А тот факт, что запустить квантовый компьютер со значительным числом кубитов непросто, – свидетельством беспрецедентных сложностей, с которыми неизменно сталкиваемся макроскопические мы, когда желаем навязывать нужное нам поведение объектам, лежащим в основе вещей{84}.

Квантовые компьютеры как примеры управления эволюцией квантовых систем могут оказаться критически важными еще и для выяснения фундаментальных свойств квантового мира. Вспомним высказывание Дойча о том, что квантовый компьютер работает сразу в нескольких вселенных (которые, однако, не расходятся навсегда, а снова сливаются, если квантовый компьютер работает без сбоев и, в частности, не делится информацией о своем состоянии с окружающей средой). Воображение не может не будоражить вопрос об искусственном интеллекте высокого уровня, который, возможно, удастся когда-нибудь реализовать в квантовом компьютере: что он расскажет о своем существовании в качестве эволюционирующей волновой функции? Мы еще вернемся к этой теме в главе 21.

19

Что из игры в классики


Перейти на страницу:

Похожие книги

Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука
Достучаться до небес. Научный взгляд на устройство Вселенной
Достучаться до небес. Научный взгляд на устройство Вселенной

Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Лиза Рэндалл

Научная литература