Мы продолжаем в том же духе произвольное количество раз (во всех известных мне примерах, впрочем, их едва ли больше четырех-пяти). Когда классики нарисованы, мы готовы рассказывать истории – как система могла «пропрыгать» по классикам, стартовав из начальной клетки и приземляясь сначала в одну из клеток первой полосы, затем в одну из клеток второй полосы и так далее. «Приземлиться» означает обладать в соответствующий момент времени свойством, которое связано с данной клеткой. Все истории – все такие способы пропрыгать классики, т. е. последовательно обладать такими свойствами.
Но истории принимаются к рассказыванию, только если они удовлетворяют третьему условию. Как уже было сказано, оно сложное, поэтому мы еще немного отложим его обсуждение. Если оно выполнено для всех
историй, отвечающих нарисованным классикам, то такие истории называются основательными (или последовательными – в смысле без противоречий){85}. Если наряду с «хорошими» историями в наборе есть и «плохие», то весь набор следует отвергнуть, а классики, на которых он основан, стереть.И вот главное: для каждой основательной истории можно вычислить ее вероятность! (Вычисление тесно связано с проверкой третьего условия, поэтому о нем будет сказано чуть позже.) А тогда лучший способ ответить на вопрос, что могло
происходить с системой «по дороге» между начальным и конечным моментами времени, – это сообщить вероятности всех возможных таких историй. Если некоторые истории получают нулевую вероятность, это означает, что таким образом система развиваться не может.Очень часто интерес представляют не вероятности самих историй, а только вероятности, что система в конце эволюции «приземлится» в какой-то из клеток последней полосы наших классиков, – вероятности, другими словами, с которыми она может иметь определенные свойства в финальный момент времени. С этим просто: для каждой клетки в последней полосе надо сложить
вероятности всех историй, которые в эту клетку приводят.Разные люди, конечно, могут нарисовать свои собственные классики с той же начальной клеткой и с теми же клетками в последней
полосе – но с совершенно непохожей разметкой посередине и вообще с другим числом полос, т. е. промежуточных моментов времени. Они расскажут разные наборы историй, которые могли происходить с системой при ее эволюции от начального момента времени к конечному. Так что же «делала» система между начальным и конечным моментами времени? На этот вопрос одного ответа нет. Реальность зависит от того, как вы «нарисовали классики» – какие промежуточные возможности вы положили в основу ваших историй. Один способ «разметить реальность» ничем не лучше и не хуже любого другого. Все определяется соображениями удобства и вашим желанием получить ответы на те или иные вопросы{86}.А с получением ответов все хорошо – они считываются из историй. Например, в связи с измерением спина электрона прибором Штерна – Герлаха вы можете задаться вопросом, имел ли электрон измеренное значение спина уже до
измерения, или же оно появилось только в момент измерения? Ответ на любой вопрос нельзя дать «просто так», требуется сначала распределить возможные события по клеткам и составить основательные истории. В последней полосе рисуем две клетки, одна «измерен спин вверх», другая – «измерен спин вниз». А в предпоследней полосе – тоже две клетки: они относятся к электрону, которого никто еще не трогает, и это клетки «имеет спин вверх» и «имеет спин вниз» (и здесь никакого измерения не подразумевается). В принципе теперь возможны как истории, ведущие от спина вверх перед измерением и к измеренному спину вверх, и к измеренному спину вниз; и аналогично истории, которые от спина вниз перед измерением ведут как к измеренному спину вниз, так и к измеренному спину вверх. Но вычисление показывает, что вероятности тех историй, где спин меняется, равны нулю. Отсюда и предлагается сделать вывод, что прибор измеряет то значение спина, которое электрон уже имел до измерения. Обычно такое положение вещей называют реализмом, и сейчас, наверное, тоже можно так говорить, с той только небольшой оговоркой, что реальностей оказывается примерно столько же, сколько есть возможных способов нарисовать классики.