Читаем Стратегические игры полностью

Если мы изменим правила игры таким образом, чтобы предоставить одному из игроков возможность ходить первым, двух равновесий больше не будет. Скорее, мы увидим, что равновесная стратегия игрока, делающего ход вторым, сводится к выбору действия, противоположного действию игрока, который ходил первым. Далее анализ методом обратных рассуждений показывает, что равновесная стратегия игрока, ходившего первым, — «ехать прямо». На рис. 6.5б и рис. 6.5в мы видим, что предоставление одному игроку возможности сделать ход первым, причем так, чтобы другой игрок видел, как он это делает, в итоге приводит к единственному равновесию обратных рассуждений, в котором игрок, сделавший первый ход, получает выигрыш 1, тогда как второй игрок — выигрыш −1. При таких правилах фактическое ведение игры не имеет никакого значения, поэтому ее последовательная версия может не представлять интереса для многих наблюдателей. Хотя подростки, скорее всего, не захотели бы играть в эту игру по измененным правилам, стратегические последствия изменения правил весьма существенны.


II. Преимущество второго хода. Преимущество второго хода может возникнуть в играх, когда одновременное выполнение ходов меняется на последовательное. Это можно проиллюстрировать на примере игры в теннис, о которой рассказывалось в главе 4. Напомним, что в этой игре Эверт планирует место возврата подачи, тогда как Навратилова решает, где обеспечивать прикрытие. В рассмотренной ранее версии игры предполагалось, что каждая ее участница умеет маскировать предстоящие ходы до самого последнего момента, поэтому, по сути, они делали их одновременно. Однако если движения Эверт перед ударом по мячу каким-то образом раскроют ее намерения, Навратилова может отреагировать и сделать второй ход в игре. Точно так же, если Навратилова наклонится в ту сторону, которую планирует прикрывать, до того как Эверт фактически выполнит возврат подачи, то Эверт становится игроком, делающим второй ход.

В этой версии игры с одновременными ходами нет равновесия в чистых стратегиях. Тем не менее при каждом порядке выполнения ходов в последовательной версии существует исход в виде единственного равновесия обратных рассуждений, причем характер этого равновесия зависит от того, кто ходит первым. Если это Эверт, то Навратилова решит прикрывать то направление, которое выбрала Эверт для удара по линии. При таком равновесии каждая теннисистка должна выигрывать очко в половине случаев. Если порядок выполнения ходов обратный, Эверт решает послать мяч в направлении, противоположном тому, которое прикрывает Навратилова; следовательно, Навратилова должна двигаться так, чтобы прикрыть удар по диагонали. В такой ситуации Эверт должна выигрывать в 80 процентах случаев. Участница игры, делающая второй ход, добивается более весомых результатов, поскольку может оптимально реагировать на ход соперницы. Для иллюстрации таких исходов вы уже умеете строить деревья игры наподобие показанных на рис. 6.5б и рис. 6.5в.

Мы вернемся к версии этой игры с одновременными ходами в главе 7 и докажем, что в ней есть равновесие Нэша в смешанных стратегиях. При этом равновесии Эверт добивается успеха в 62 процентах случаев. Следовательно, в двух версиях игры с последовательными ходами показатель результативности Эверт при равновесии в смешанных стратегиях в одновременной игре выше 50 процентов, которые она получит, делая ход первой, но ниже 80 процентов, если она будет ходить второй.


III. Оба игрока могут добиться большего. То, что в игре может быть преимущество первого или второго хода, которое блокируется при одновременном выполнении ходов, вполне понятно на интуитивном уровне. Куда больше удивляет вероятность того, что оба игрока могут добиться большего при том или ином наборе правил выполнения ходов. Мы проиллюстрируем это на примере игры с монетарной и фискальной политикой между Федеральной резервной системой и Конгрессом. В главе 4 мы анализировали эту игру с одновременными ходами; таблица выигрышей (рис. 4.5) воспроизводится на рис. 6.6a, а две версии игры с последовательными ходами представлены на рис. 6.6б и рис. 6.6 в. Для краткости обозначим стратегии Конгресса как «баланс» и «дефицит» вместо «сбалансированный бюджет» и «дефицит бюджета», а стратегии ФРС как «высокие ставки» и «низкие ставки» вместо «высокие процентные ставки» и «низкие процентные ставки».






Рис. 6.6. Три версии игры с монетарной и фискальной политикой


В версии этой игры с одновременными ходами доминирующая стратегия Конгресса — «дефицит», и ФРС, зная об этом, выбирает стратегию «высокие ставки», что обеспечивает обоим выигрыши 2. Почти то же самое происходит в версии игры с последовательными ходами, где первой ходит ФРС. Предвидя, что на каждый сделанный ею ход Конгресс ответит стратегией «дефицит», ФРС должна выбирать стратегию «высокие ставки», обеспечивающую выигрыш 2 вместо 1.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг