Читаем Стратегические игры полностью

Мы проиллюстрируем стратегическую неопределенность Навратиловой в отношении узла, в котором она должна принимать решение, нарисовав овал, вмещающий в себя два соответствующих узла. (В качестве альтернативы можно соединить их пунктирной линией; она используется для того, чтобы отличить ее от сплошных линий, которые представляют ветви дерева.) Узлы, находящиеся в пределах этого овала или круга, называются информационным множеством игрока, делающего в них ходы. Такое множество указывает на наличие у этого игрока несовершенной информации: он не может провести различие между узлами множества на основании имеющейся информации (поскольку не может видеть ход другого игрока до того, как сделает свой ход). В соответствии с этим стратегический выбор, делаемый игроком в пределах одного информационного множества, должен подразумевать один и тот же ход во всех узлах, входящих в это множество. Иными словами, Навратилова должна выбрать либо ПЛ, либо ПД в обоих узлах данного информационного множества. Она не может выбрать ПЛ в одном узле и ПД в другом, как на рис. 6.5б, где представлена игра с последовательными ходами и Навратилова ходила второй.

В связи с этим мы должны внести коррективы в наше определение стратегии. В главе 3 мы определили ее как исчерпывающий план действий, указывающий, какие действия должен предпринимать игрок в каждом узле, в котором наступает его очередь ходить в соответствии с правилами игры. Теперь мы должны более точно определить стратегию как исчерпывающий план действий, указывающий, какие действия должен предпринимать игрок в каждом информационном множестве, в узлах которого наступает его очередь ходить в соответствии с правилами игры.

Концепция информационного множества также актуальна, когда игрок сталкивается с внешней неопределенностью в отношении некоторых условий, влияющих на его решение, а не ходов другого игрока. Например, фермер, сажающий ту или иную культуру, не знает, какая будет погода в период ее вегетации, хотя на основании своего опыта или метеорологических прогнозов может определить вероятность альтернативных возможностей. Мы можем рассматривать погоду как случайный выбор, который делает внешний игрок по имени «природа», не получающий никаких выигрышей, а просто выбирающий исходя из общеизвестных вероятностей[87]. В таком случае мы можем включить различные узлы, соответствующие ходам природы, в информационное множество фермера, ограничивающее его выбор одним и тем же действием во всех узлах. Эта ситуация проиллюстрирована на рис. 6.8.


Рис. 6.8. Природа и информационное множество


С помощью понятия информационного множества мы можем формализовать концепции совершенной и несовершенной информации в игре, которые ввели в главе 2 (раздел 2.Г). В игре присутствует совершенная информация, если в ней нет ни стратегической, ни внешней неопределенности, что происходит в случае отсутствия в игре информационных множеств, содержащих два или более узла. Иными словами, в игре имеется совершенная информация, если все ее информационные множества содержат единичные узлы.

Хотя с концептуальной точки зрения это достаточно простое представление, оно не упрощает способа решения игры. По этой причине мы используем его только тогда, когда оно позволяет проще передать ту или иную мысль. В главе 8 и главе 14 приведено несколько примеров представления игр с помощью информационных множеств.

Б. Представление и анализ игр с последовательными ходами в стратегической форме

Рассмотрим игру (рис. 6.6в) с последовательными ходами в монетарную и фискальную политику, в которой Конгресс ходит первым. Допустим, нам нужно представить эту игру в нормальной или стратегической форме, то есть в виде таблицы выигрышей, строки и столбцы которой — стратегии двух игроков. Следовательно, мы должны начать с определения стратегий.

Для Конгресса, делающего первый ход, перечислить стратегии не составит труда. Существует только два хода, «баланс» и «дефицит», они же являются стратегиями. Что касается игрока, делающего второй ход, то здесь все гораздо сложнее. Не забывайте, что стратегия — это исчерпывающий план действий, указывающий, какие действия должен предпринимать игрок в каждом узле, в котором наступает его очередь ходить. Поскольку ФРС получает право сделать ход в двух узлах (а также потому, что, согласно нашему предположению, ходы в этой игре действительно выполняются последовательно, а значит, эти два узла не объединяются в информационное множество) и может выбрать либо стратегию «низкие ставки», либо «высокие ставки» в каждом из узлов, существует четыре комбинации ее вариантов выбора: 1) «низкие ставки», если «баланс»; «высокие ставки», если «дефицит» (в сокращенном виде «Н, если Б; В, если Д»); 2) «высокие ставки», если «баланс»; «низкие ставки», если «дефицит» (сокращенно «В, если Б; Н, если Д»); 3) «низкие ставки» всегда; 4) «высокие ставки» всегда.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг