Как правило, в играх с конечными деревьями и совершенной информацией, в которых участники могут наблюдать все предыдущие действия, предпринятые всеми игроками, а значит, нет нескольких узлов, входящих в одно информационное множество, анализ методом обратных рассуждений позволяет найти единственное (за исключением элементарных и уникальных случаев равного распределения выигрышей) совершенное равновесие подыгры. Подумайте вот о чем: если проанализировать любую подыгру, которая начинается в последнем узле принятия решений последним игроком, делающим ход, то его наилучший выбор — стратегия, обеспечивающая ему самый высокий выигрыш. Но это и есть действие, выбранное в ходе обратных рассуждений. По мере перемещения игроков по дереву игры в обратном направлении обратные рассуждения исключают все нецелесообразные стратегии, в том числе недостоверные угрозы или обещания, в результате чего совокупность действий, предпринятых в конечном счете, представляет собой совершенное равновесие подыгры. Следовательно, в контексте данной книги совершенное равновесие подыгры — это просто еще одно замысловатое название равновесия обратных рассуждений. На более продвинутых уровнях теории игр, где игры включают в себя сложные структуры данных и информационные множества, совершенное равновесие подыгры имеет более глубокий смысл.
4. Игры с тремя участниками
До сих пор мы обсуждали в данной главе только игры с двумя участниками, каждый из которых делает по два хода. Однако эти же методы применимы и к более крупным и общим играм. Мы проиллюстрируем это на примере игры «уличный сад» из главы 3
. В частности, 1) изменим правила игры с последовательного на одновременное выполнение ходов, а также 2) сохраним последовательные ходы, но покажем и проанализируем игру в стратегической форме. Сначала мы воспроизведем дерево игры с последовательными ходами (рис. 3.6) на рис. 6.10 и напомним вам о равновесии обратных рассуждений.Рис. 6.10.
Игра «уличный сад» с последовательными ходамиРавновесная стратегия Эмили, делающей первый ход, — просто «не вносить вклад». Участница игры, которая ходит второй, выбирает из четырех возможных стратегий (выбор из двух ответных ходов в двух узлах) и останавливается на стратегии «не вносить вклад» (Н), если Эмили выбрала стратегию «внести вклад», и на стратегии «внести вклад» (В), если Эмили выбрала стратегию «не вносить вклад», или в сокращенном виде «Н, если В; В, если Н», или даже просто «НВ». В распоряжении Талии 16 возможных стратегий (выбор из двух ответных ходов в каждом из четырех узлов), а ее равновесная стратегия — «Н после В Эмили и Н Нины, Н после их ВН, Н после их НВ и Н после их НН», или сокращенно «НВВН».
Не забывайте о причине такого выбора. У участницы игры, делающей ход первой, есть возможность выбрать вариант «не вносить вклад», зная, что две другие участницы поймут, что без их вклада сада не будет, а они хотят его достаточно сильно для того, чтобы инвестировать в его создание.
Теперь давайте изменим правила игры таким образом, чтобы сделать ее игрой с одновременными ходами. (В главе 4
мы решили версию этой игры с одновременными ходами, получив несколько иные выигрыши; здесь мы используем выигрыши из главы 3.) Матрица выигрышей представлена на рис. 6.11. Анализ наилучших ответов позволяет без труда определить, что в этой игре четыре равновесия Нэша.Рис. 6.11.
Игра «уличный сад» с одновременными ходамиВ трех равновесиях Нэша игры с одновременными ходами две ее участницы вносят вклад, тогда как третья нет. Эти равновесия аналогичны равновесию обратных рассуждений в игре с последовательными ходами. По существу, каждое из них соответствует равновесию обратных рассуждений в последовательной игре с определенным порядком выполнения ходов. Кроме того, любой заданный порядок ходов в последовательной версии игры дает одну и ту же таблицу выигрышей игры с одновременными ходами.
Но в данном случае есть и четвертое равновесие Нэша, при котором ни одна из участниц игры не вносит вклад в создание сада. Принимая во внимание выбор двух других участниц игры (а именно — «не вносить вклад»), один игрок не в силах создать красивый сад и по этой причине тоже останавливается на варианте «не вносить вклад». Таким образом, при переходе от последовательных к одновременным ходам преимущество первого хода утрачивается. При этом возникают несколько равновесий, но лишь в одном из них сохраняется высокий выигрыш участницы игры, сделавшей первый ход в самом начале.