Читаем Стратегические игры полностью

А как насчет кандидата В? Он может выиграть выборы при использовании системы относительного большинства или мгновенного второго тура. В любом из этих случаев кандидаты А и В, получившие 40 и 35 голосов в первом туре, выходят во второй тур. Система простого большинства со вторым туром потребовала бы от избирателей повторного выбора между А и В, тогда как система мгновенного второго тура привела бы к исключению кандидата Б и передаче его голосов (из второй группы избирателей) альтернативе со следующим уровнем предпочтения, то есть кандидату В. В итоге кандидат В победит во втором туре с перевесом голосов 60 против 40, поскольку кандидат А — наименее предпочтительная альтернатива для 60 из 100 избирателей.

Еще одним примером получения разных результатов вследствие применения разных процедур голосования могут служить выборы мэра Окленда в 2010 году, о которых мы упоминали во вступлении к данной главе. В настоящее время голосование по выбору места проведения Олимпийских игр проходит по системе мгновенного второго тура вместо нескольких этапов голосования по принципу относительного большинства с последовательным исключением. Такое изменение было сделано после получения весьма неожиданных результатов в ходе выбора городов для проведения игр 1996-го и 2000 годов. В обоих случаях победитель по принципу относительного большинства во всех турах голосования, кроме предпоследнего, проиграл в состязании с оставшимся городом в последнем туре. Афины проиграли Атланте в борьбе за право проведения Олимпийских игр 1996 года, а Пекин — Сиднею за право проведения Олимпийских игр 2000 года.

3. Оценка систем голосования

Анализ различных парадоксов голосования позволяет предположить, что методам голосования присущ ряд недостатков, которые приводят к необычным, неожиданным, а порой и несправедливым результатам. Кроме того, из этого предположения вытекает следующий вопрос: существует ли система голосования, удовлетворяющая определенным условиям регулярности, в том числе условию транзитивности, которая является самой «справедливой», то есть наиболее точно учитывает предпочтения электората? Теорема о невозможности Кеннета Эрроу говорит нам, что ответ на этот вопрос — нет[261].

Формальное описание теоремы Эрроу и ее полное доказательство выходят за рамки данной книги, но суть теоремы проста. Эрроу утверждал, что ни один метод агрегирования предпочтений не может удовлетворять всем шести установленным им условиям.

1. Ранжирование социальных или коллективных предпочтений должно охватывать все альтернативы (быть полным).

2. Ранжирование предпочтений должно быть транзитивным.

3. Ранжирование предпочтений должно удовлетворять условию, известному как условие положительного реагирования, или свойство Парето. Если при наличии двух альтернатив А и Б электорат единодушно отдает предпочтение А, то агрегированное ранжирование предпочтений должно ставить альтернативу А выше альтернативы Б.

4. Ранжирование предпочтений не должно определяться внешними факторами (такими как обычаи), не зависящими от предпочтений отдельных членов общества.

5. Ранжирование предпочтений не должно быть диктаторским: один избиратель не должен влиять на ранжирование предпочтений всей группы.

6. Ранжирование предпочтений должно быть независимым от посторонних альтернатив; другими словами, никакие изменения в группе кандидатов (включение кандидатов в группу или исключение из нее) не должны приводить к изменению рейтинга тех кандидатов, на которых это не распространяется.


Теорему Эрроу часто сокращают путем включения в нее только первых четырех условий, ссылаясь на сложность одновременного удовлетворения последних двух условий; упрощенная формулировка гласит, что достичь независимости от посторонних альтернатив без диктаторства невозможно[262].

Наверное, вы уже увидели, что некоторые из рассмотренных выше методов голосования не удовлетворяют всем условиям Эрроу. Требование о независимости от посторонних альтернатив, например, нарушается как в случае системы единого передаваемого голоса, так и в случае подсчета Борда, как мы убедились в разделе 2.В. Однако метод Борда недиктаторский и непротиворечивый и удовлетворяет свойству Парето. Все остальные рассмотренные нами системы удовлетворяют условию независимости от посторонних альтернатив, но нарушают одно из оставшихся условий.

Теорема Эрроу положила начало обширным исследованиям относительно устойчивости его вывода к изменениям исходных предпосылок. Экономисты, политологи и математики искали способ уменьшить количество критериев или как минимум ослабить условия Эрроу с тем, чтобы найти процедуру, удовлетворяющую этим критериям при сохранении основных условий, однако их усилия в основном оказались тщетными.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг