Читаем Стратегические игры полностью

В настоящее время большинство теоретиков в области экономики и политических наук признают, что при выборе метода агрегирования голосов или предпочтений необходим определенный компромисс. Ниже приведен ряд самых значимых примеров, каждый из которых представляет этот подход в определенной области — политологии, экономике и математике.

А. Условие Блэка

Обсуждение этой темы в разделе 2.А показало, что процедура парного голосования не удовлетворяет условию Эрроу о транзитивности ранжирования социальных предпочтений, даже когда каждый случай ранжирования индивидуальных предпочтений транзитивен. Один из способов преодолеть это препятствие на пути к удовлетворению условий Эрроу и предотвращения парадокса Кондорсе — ввести ограничение на упорядочивание предпочтений отдельными избирателями. Такое ограничение известно как требование о предпочтениях с одним максимумом и сформулировано Дунканом Блэком в конце 1940-х годов[263]. В действительности фундаментальная работа Блэка была опубликована еще до появления теоремы Эрроу, и он писал ее с учетом парадокса Кондорсе, однако впоследствии теоретики в области голосования доказали ее связь с работой Эрроу. Требование о предпочтениях с одним максимумом называют также условием Блэка.

Чтобы ранжирование предпочтений имело один максимум, нужно, чтобы рассматриваемые альтернативы подлежали упорядочиванию по какому-то одному параметру (например, по уровню расходов, связанному с каждым политическим курсом). Для иллюстрации этого требования мы построили график (рис. 15.4), на котором указанный параметр отображен на горизонтальной оси, а ранжирование предпочтений избирателей (или выигрыш) — на вертикальной. Для выполнения требования о предпочтениях с одним максимумом каждый голосующий должен иметь одну идеальную или самую предпочтительную альтернативу, а остальные альтернативы с более низким рейтингом, отдаленные от точки самой предпочтительной альтернативы, должны стабильно обеспечивать более низкие выигрыши. На рис. 15.4 у двух избирателей, мистера Лефта и мистера Райта, разные идеальные точки, соответствующие такому параметру, как политика, но в каждом случае выигрыш неизменно уменьшается по мере удаления от идеальной точки.


Рис. 15.4. Предпочтения с одним максимумом


Блэк демонстрирует, что если предпочтения каждого избирателя имеют один максимум, то парное голосование (по принципу простого большинства) должно обеспечивать транзитивное социальное ранжирование предпочтений. При этом парадокса Кондорсе удается избежать, а парное голосование удовлетворяет условию транзитивности Эрроу.

Б. Робастность

Альтернативный, более поздний метод поиска компромисса с Эрроу разработали теоретики в области экономики Парта Дасгупта и Эрик Максин[264], предложив новый критерий оценки методов голосования под названием робастность. Робастность определяется посредством анализа того, как часто процедура голосования, которая не является диктаторской и удовлетворяет условию независимости от посторонних альтернатив и свойству Парето, удовлетворяет также требованию о транзитивности ранжирования социальных предпочтений, то есть подсчитывается количество вариантов ранжирования предпочтений, когда такая процедура удовлетворяет условию транзитивности.

Критерий робастности позволяет доказать, что принцип простого большинства максимально робастный, то есть недиктаторский, удовлетворяет условию независимости от посторонних альтернатив и свойству Парето, а также обеспечивает транзитивное ранжирование социальных предпочтений по максимально возможному количеству вариантов ранжирования предпочтений избирателей. После принципа простого большинства на шкале робастности находятся другие процедуры голосования, в том числе подсчет Борда и принцип относительного большинства. Критерий робастности интересен тем, что позволяет определить одну из наиболее широко используемых процедур голосования (систему голосования, которая чаще всего ассоциируется с демократическим процессом) в качестве кандидата на лучшую процедуру агрегирования голосов.

В. Ранжирование интенсивности предпочтений
Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг