И наконец, по мнению некоторых теоретиков, системы голосования следует оценивать не по их способности удовлетворять условиям Эрроу, а по их склонности стимулировать манипулирование. Относительную манипулируемость системы голосования можно определить по количеству информации о предпочтениях других избирателей, которая требуется голосующим для успешного манипулирования выборами. По данным ряда исследований, основанных на этом критерии, из всех рассмотренных выше процедур голосования принцип относительного большинства самый манипулируемый (то есть требующий наименьшего объема информации о предпочтениях). Рейтинг процедур голосования в порядке снижения уровня манипулируемости таков: одобрительное голосование, подсчет Борда, процедура внесения поправок, принцип простого большинства и процедура Хара (система единого передаваемого голоса)[274]
.Важно отметить, что классификация процедур голосования по уровню манипулируемости зависит только от объема информации, необходимой для манипулирования системой голосования, и не основана на легкости правильного использования этой информации или том, могут ли отдельные избиратели или группы без труда прибегнуть к манипулированию. На практике
5. Теорема о медианном избирателе
Во всех предыдущих разделах основное внимание уделялось поведению (стратегическому или иному) избирателей на выборах с несколькими альтернативами. Тем не менее стратегический анализ применим и к поведению
В данном случае полная игра состоит из двух этапов. На первом кандидаты выбирают свою позицию в политическом спектре. На втором избиратели выбирают одного из кандидатов. В общем плане игра на втором этапе открыта для всех возможных стратегических искажений предпочтений, обсуждавшихся ранее. В связи с этим в целях нашего анализа мы сократили количество кандидатов до двух во избежание появления такого поведения в равновесии. Только при наличии двух кандидатов голосование избирателей будет в точности соответствовать их предпочтениям, а решение кандидатов о позиции в политическом спектре, принимаемое на первом этапе, — единственным поистине интересным аспектом большой игры. Именно на этом этапе теорема о медианном избирателе определяет поведение, соответствующее равновесию Нэша.
Сначала рассмотрим совокупность из 90 миллионов избирателей, каждый из которых имеет предпочтительную позицию в политическом спектре, состоящем из пяти позиций: крайняя левая (КЛ), левая (Л), центральная (Ц), правая (П) и крайняя правая (КП). Допустим, избиратели распределены симметрично вокруг центра политического спектра. Дискретное распределение
их местоположения показано на гистограмме, или столбчатой диаграмме, представленной на рис. 15.7. Высота каждого столбика отображает количество избирателей, соответствующих этой позиции. В данном примере мы исходим из предположения, что из 90 миллионов избирателей 40 миллионов отдают предпочтение левой позиции, 20 миллионов — крайней правой и по 10 миллионов — крайней левой, центральной и правой.Рис. 15.7.
Дискретное распределение избирателейИзбиратели будут голосовать за кандидата, который публично позиционирует себя как максимально разделяющего их собственную позицию в политическом спектре во время выборов. Если оба кандидата политически равноудалены от группы избирателей-единомышленников, каждый избиратель подбрасывает монету, чтобы решить, какого кандидата выбрать. Этот процесс дает каждому кандидату половину избирателей в данной группе.