Читаем Стратегические игры полностью

В-третьих, положение медианного избирателя не всегда совпадает с геометрическим центром политического спектра. Эти две позиции совпадают, если распределение избирателей симметрично, но медианный избиратель может располагаться слева от геометрического центра, если распределение смещено влево (как на рис. 15.7), и справа, если распределение смещено вправо. Это позволяет объяснить, почему все политические кандидаты штата Массачусетс, например, чаще бывают либералами, чем кандидаты на аналогичные должности в Техасе или Южной Каролине.

Теорему о медианном избирателе можно сформулировать по-разному. Одна версия просто гласит, что позиция медианного избирателя обеспечивает равновесное положение кандидатов в выборах с двумя кандидатами. Согласно другой версии, наиболее предпочитаемая медианным избирателем позиция будет победителем по Кондорсе; она победит любую другую позицию в парном сравнении. Например, если М — это медианная позиция, а Л — любая позиция слева от М, то М получит все голоса избирателей, отдающих наибольшее предпочтение позиции, находящейся в точке М или справа от нее, плюс некоторые голоса слева от М, но ближе к М, чем к Л. Таким образом, М получит более 50 % голосов. Эти две версии формулировки теоремы равнозначны, поскольку во время выборов с участием двух кандидатов оба кандидата, стремящиеся получить большинство голосов, займут позицию победителя по Кондорсе. Следовательно, эти варианты интерпретации теоремы идентичны. Кроме того, справедливость данного результата для конкретной совокупности избирателей обеспечивает требование данной теоремы (в любой ее форме) о «разумности» предпочтений каждого избирателя, как говорилось выше. Под разумными подразумеваются предпочтения с одним максимумом, как в случае Блэка, о котором шла речь в разделе 3.А и на рис. 15.4. У каждого избирателя есть единственная, наиболее предпочтительная позиция на шкале политического спектра, и полезность (или выигрыш) избирателя снижается при ее смещении в любую сторону[278]. В случае реальных президентских выборов в США эту теорему подтверждает склонность основных кандидатов давать избирателям весьма похожие обещания.

Б. Непрерывный политический спектр

Теорему медианного избирателя также можно доказать и для непрерывного распределения политических позиций. Вместо выбора из пяти, трех или любого другого конечного числа позиций непрерывное распределение подразумевает возможность выбора из бесконечного количества политических позиций. При этом они расположены на вещественной числовой оси в диапазоне значений от 0 до 1[279]. Избиратели, как и прежде, распределены по шкале политического спектра, но поскольку теперь их распределение стало непрерывным, а не дискретным, для иллюстрации их местоположения мы используем функцию распределения[280], а не гистограмму. На рис. 15.9 отображены две простые функции — функция равномерного распределения и функция (симметричного) нормального распределения[281]. Площадь под каждым графиком соответствует общему количеству имеющихся голосов; в любой заданной точке в интервале от 0 до 1, такой как точка x на рис. 15.9a, число голосов, соответствующих этой точке, равно площади под функцией распределения в интервале от 0 до x. Очевидно, что медианный избиратель в каждом из этих случаев распределения находится в центре политического спектра, то есть в позиции 0,5.




Рис. 15.9. Непрерывное распределение избирателей


В случае непрерывного распределения построить таблицу выигрышей двух кандидатов невозможно; такие таблицы обязательно должны иметь конечное число размерностей, поэтому они не могут вместить бесконечное количество возможных стратегий игроков. Тем не менее мы можем решить эту игру, применив ту же стратегическую логику, что и в случае дискретного (конечного) распределения в разделе 5.А.

Рассмотрим варианты, которыми располагают Клаудия и Долорес в процессе анализа возможных политических позиций, которые они могут занять. Каждая из них знает, что ее задача — найти стратегию, входящую в равновесие Нэша, иначе говоря, свой наилучший ответ на равновесную стратегию соперницы. В этой игре несложно определить стратегии, которые представляют собой наилучшие ответы, хотя всю совокупность таких стратегий описать невозможно.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг