Читаем Стратегические игры полностью

Выборы можно проводить с использованием ряда различных процедур голосования, которые позволяют изменить порядок рассмотрения вопросов или способ подсчета голосов. Процедуры голосования подразделяются на бинарные, множественные и смешанные методы. Бинарные методы включают в себя принцип простого большинства и парные процедуры голосования, в частности метод Кондорсе и процедуру внесения поправок. Позиционные методы, такие как принцип относительного большинства и подсчет Борда, а также одобрительное голосование, относятся к категории множественных методов. Смешанные методы представлены системой простого большинства со вторым туром, системой мгновенного второго тура и системой пропорционального представительства.

Парадоксы голосования (парадокс Кондорсе, парадокс повестки дня и парадокс перестановки) показывают, что трудности с агрегированием предпочтений или небольшие изменения в списке рассматриваемых вопросов могут привести к результатам, противоречащим здравому смыслу. Еще один парадоксальный результат состоит в том, что итоги любых отдельно взятых выборов при заданной совокупности предпочтений избирателей могут меняться в зависимости от используемой процедуры голосования. Определенные принципы оценки методов голосования можно сформулировать, хотя, согласно теореме о невозможности Эрроу, ни одна система не удовлетворяет всем критериям одновременно. Исследователи, работающие в самых разных областях, пытались найти альтернативу принципам, сформулированным Эрроу.

Избиратели могут использовать стратегическое поведение в игре, которая обеспечивает выбор процедуры голосования, или в самих выборах посредством искажения своих предпочтений. Избиратели могут стратегически искажать свои предпочтения ради получения наиболее желаемого или предотвращения нежелательного результата. При наличии несовершенной информации избиратели могут принимать решение о целесообразности стратегического голосования исходя из своих убеждений в отношении поведения других избирателей и знания о распределении их предпочтений.

Кандидаты также могут придерживаться стратегического поведения в процессе формирования политической платформы. Общий результат, известный как теорема о медианном избирателе, показывает, что в выборах с участием двух кандидатов оба выбирают позицию, совпадающую с позицией предпочтений медианного избирателя. Эта теорема справедлива в случае дискретного или непрерывного распределения избирателей по шкале предпочтений.

Ключевые термины

Бинарные методы

Гистограмма

Дискретное распределение

Индекс Коупленда

Искреннее голосование

Медианный избиратель

Метод Кондорсе

Метод одобрительного голосования

Метод относительного антибольшинства

Многоэтапная процедура

Множественный метод

Непрерывное распределение

Нетранзитивное ранжирование предпочтений

Нормальное распределение

Парадокс Кондорсе

Парадокс перестановки

Парадокс повестки дня

Парное голосование

Победитель по Кондорсе

Подсчет Борда

Позиционный метод

Предпочтение с одним максимумом

Принцип минимальной дифференциации

Принцип относительного большинства голосов

Принцип простого большинства

Принцип простого большинства со вторым туром

Пропорциональное представительство

Процедура внесения поправок

Равномерное распределение

Ранжирование социальных предпочтений

Робастность

Система единого передаваемого голоса

Система мгновенного второго тура

Смешанный метод

Спойлер

Стратегическое голосование

Стратегическое искажение предпочтений

Теорема Гиббарда — Саттертуэйта

Теорема о медианном избирателе

Теорема о невозможности Эрроу

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг