Теперь допустим, что в предстоящих президентских выборах участвуют два кандидата: бывшая первая леди (Клаудия) и бывшая потенциальная первая леди (Долорес), каждая из которых выдвинула свою кандидатуру на пост президента[275]
. При конфигурации избирателей как на рис. 15.7 мы можем составить таблицу выигрышей для двух кандидатов, показывающую число голосов, на получение которых может рассчитывать каждый из них при всех возможных комбинациях вариантов выбора политической платформы. Эта таблица пять на пять представлена на рис. 15.8, где данные выражены в миллионах голосов. Каждому кандидату предстоит выбрать оптимальную стратегию положения в политическом спектре, чтобы максимизировать количество полученных голосов (а значит, и шансы на победу)[276].Рис. 15.8.
Таблица выигрышей в игре «позиционирование кандидатов»Вот как распределены голоса. Когда оба кандидата выбирают
Хотя таблица, представленная на рис. 15.8
, достаточно большая, игра решается очень быстро. Начнем с уже знакомого вам поиска доминирующих или доминируемых стратегий двух игроков. И сразу же видим, что для Клаудии стратегия КЛ доминируема стратегией Л, а стратегия КП доминируема стратегией П. В случае Долорес стратегия КЛ также доминируема стратегией Л, а стратегия КП доминируема стратегией П. После исключения крайних стратегий для каждого кандидата стратегия П доминируема стратегией Ц. После исключения двух стратегий П стратегия Ц доминируема стратегией Л в случае каждого кандидата. В итоге в таблице остается одна ячейка — (Л, Л); это и есть равновесие Нэша.Теперь следует отметить три важные характеристики равновесия в игре с позиционированием кандидатов. Во-первых, они оба располагаются в равновесии в
Во-вторых, что особенно важно, оба кандидата находятся в позиции медианного избирателя. В нашем примере, при общем количестве 90 миллионов избирателей, медианный избиратель — это избиратель под номером 45 миллионов от каждого конца. Числа в пределах одного местоположения могут быть выбраны произвольно, но местонахождение медианного избирателя определено однозначно; в нашем примере медианный избиратель расположен на шкале политического спектра в позиции Л, где и находятся оба кандидата. Это именно тот результат, который предсказывает теорема о медианном избирателе.