Читаем Стратегические игры полностью

Если игра дошла до того момента, когда остается только x10, игрок Б может сделать последнее предложение, согласно которому он получает «почти весь» излишек, оставив игроку А жалкий цент или что-то около того. Поскольку у игрока А выбор только один — либо получить эту сумму, либо совсем ничего, ему следует принять предложение. Во избежание сложностей с кропотливым отслеживанием мизерных сумм, давайте обозначим этот исход так: «x10 игроку Б, 0 игроку А». То же самое сделаем и в других (более ранних) раундах.

Зная о том, что произойдет в раунде 10, переходим к раунду 9. Здесь игрок А должен сделать предложение, после чего остается (x9 + x10). Игрок А знает, что должен предложить игроку Б минимум x10, иначе тот отклонит предложение и переведет игру в раунд 10, где он сможет получить такую большую сумму. Игрок А не хочет предлагать игроку Б больше. Таким образом, в раунде 9 игрок А предложит разделить сумму так, чтобы ему досталась сумма x9, а игроку Б — x10.

Еще одним раундом ранее, когда остается x8 + x9 + x10, игрок Б предложит такое разделение, при котором он отдаст игроку А x9 и оставит себе (x8 + x10). Анализ методом обратных рассуждений позволяет сделать вывод, что в самом первом раунде игрок А предложит разделить сумму так, чтобы оставить себе (x1 + x3 + x5 + x7 + x9) и отдать (x2 + x4 + x6 + x8 + x10) игроку Б. Это предложение будет принято.

Эти формулы можно запомнить с помощью простого приема. Выстройте гипотетическую последовательность, в которой отклоняются все предложения. (На самом деле такая последовательность не соответствует действительности.) Затем сложите все суммы, которые были бы потеряны из-за отказов одного игрока. Это и есть то, что получает другой игрок в случае фактического равновесия. Например, когда игрок Б отказался принять первое предложение игрока А, общий имеющийся излишек уменьшился на x1 и сумма x1 стала частью того, что получил игрок А в равновесии этой игры.

Если у каждого игрока положительное значение BATNA, данный анализ необходимо несколько модифицировать с учетом этих значений. В последнем раунде игрок Б должен предложить игроку А сумму BATNA, равную a. Если x10 больше a, игроку Б достанется (x10 — a), если нет, игра должна завершиться до наступления этого раунда. Теперь в раунде 9 игрок А должен предложить игроку Б большую из двух сумм — сумму (x10 — a), которую игрок Б может получить в раунде 10, или сумму BATNA, равную b, которую игрок Б может получить за пределами данного соглашения. Этот анализ можно продолжить до раунда 1; мы предоставляем эту возможность вам: выполните его самостоятельно методом обратных рассуждений.

Итак, мы нашли равновесие обратных рассуждений в переговорной игре с чередующимися предложениями и в процессе его поиска описали полные стратегии (исчерпывающие условные планы действий), входящие в состав данного равновесия, а именно действия каждого игрока в случае, если бы игра перешла на более поздний этап. На самом деле соглашение достигается сразу же после внесения первого предложения. Более поздние этапы игры так и не наступают: они представляют собой узлы и пути, находящиеся за пределами равновесия. Но, как и всегда при использовании метода обратных рассуждений, в основе исходного действия лежит предположение о том, что игроки сделали бы в этих узлах, если бы дошли до них.

Следует отметить еще один важный момент: постепенное убывание (несколько раундов предложений) обеспечивает более равное или справедливое разделение общего выигрыша, чем резкое убывание (когда допускается только один раунд переговоров). Во втором случае соглашение не будет достигнуто, если игрок Б отклонит первое предложение игрока А; тогда в соответствии с равновесием обратных рассуждений игрок А попытается оставить себе (почти) весь излишек, в ультимативной форме предложив игроку Б согласиться на мизерную сумму, иначе тот вообще ничего не получит. Последующие раунды предоставляют игроку Б достоверную возможность отказаться от весьма несправедливого первого предложения.

4. Экспериментальные данные

Теория переговорного процесса данного типа достаточно проста, и многие исследователи провели лабораторные или аудиторные эксперименты, в которых воссоздавались условия переговорной игры с убыванием общей величины, чтобы понаблюдать за тем, что на самом деле будут делать испытуемые в подобной ситуации. Мы вкратце упомянули о таких экспериментах в главе 3 в ходе анализа обоснованности метода обратных рассуждений, теперь же рассмотрим их более подробно в контексте переговоров[308].

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг