Читаем Стратегические игры полностью

При рассмотрении так называемой диктаторской игры страх неприятия можно исключить. Ее участников снова разбивают на пары. Один игрок (скажем, игрок А) определяет способ разделения, а другой (Б) просто пассивно ждет, что соблаговолит ему выделить игрок А. Теперь разделение становится еще неравноценнее, но даже в этом случае большинство игроков А решают оставить себе не более 70 %. Данный результат позволяет предположить, что здесь свою роль играет глубоко укоренившееся чувство справедливости.

Тем не менее такое чувство тоже имеет свои пределы. В ходе некоторых экспериментов чувство справедливости возникало даже при распределении ролей предлагающего и выбирающего в случайном порядке. В одном из вариантов игры участникам эксперимента давали простой тест, и тот, кто справился с ним лучше, получал роль предлагающего. Это вызывало у испытуемых ощущение, что они заслужили эту роль, и в итоге они чаще склонялись к более неравному разделению. Когда диктаторская игра проводилась с предоставлением заслуженных прав и введением более строгих условий анонимности, большинство игроков А оставляли себе все, но некоторые (около 5 %) по-прежнему предлагали вариант 50 на 50.

Один из нас (Диксит) провел аудиторный эксперимент, в ходе которого группы по 20 студентов объединяли в один компьютерный кластер. Студентов случайным образом, при сохранении анонимности, разбивали по парам, а затем каждая пара пыталась договориться о распределении 100 баллов. Роли предлагающего и выбирающего не назначались; любой из пары мог сделать или принять предложение, причем в любой момент времени. Игроки, входящие в пару, могли обмениваться мгновенными сообщениями, которые выводились на экраны компьютеров. Раунд переговоров мог закончиться в любой произвольный момент в интервале от 3 до 5 минут; если к этому времени пара не достигала согласия, оба игрока получали ноль баллов. За весь период игры проводилось 10 подобных раундов с разными случайно выбранными соперниками, что устраняло вероятность сотрудничества посредством повторения. Студенты, участвовавшие в эксперименте, поддерживали постоянные отношения вне игры, но, как правило, не знали и не догадывались о том, с кем именно играют в каждом раунде, хотя в ходе эксперимента не предпринималось особых усилий для соблюдения анонимности. Оценка каждого студента за всю игру представляла собой сумму очков, набранных за 10 раундов. Ставки были довольно высокими, поскольку на эту оценку приходилось 5 % от итоговой оценки за курс обучения!

Максимальное количество баллов, набранных в ходе игры, составило 515. Студенты, которые быстро согласились на разделение по принципу 50 на 50, получили самые высокие результаты. Те, кто пытался добиться гораздо более неравного распределения баллов или отказался разделить разницу в 10 баллов между разными предложениями и столкнулся с временным ограничением, получили низкие результаты[309]. Создается впечатление, что умеренность и справедливость действительно вознаграждаются, даже если оцениваются в категориях собственного выигрыша.

5. Чередующиеся предложения, модель II: нетерпение

Теперь рассмотрим тип издержек в связи с промедлением в достижении соглашения. Предположим, фактический денежный эквивалент общей величины, подлежащей разделению, не уменьшается, но поскольку деньги имеют для игроков так называемую временную стоимость, они предпочитают раннее достижение соглашения позднему. Игроки делают предложения по очереди (так, как описано в разделе 3), но их временные предпочтения таковы, что деньги, полученные сейчас, лучше денег, полученных в будущем.

Для конкретности будем считать, что, по мнению обоих переговорщиков, 95 центов немедленно так же хороши, как и 1 доллар в следующем раунде.

Игрок, предпочитающий что-то прямо сейчас, а не в будущем, нетерпелив и придает меньшее значение будущему по сравнению с настоящим. Мы сталкивались с этой идеей в разделе 2 главы 10 и обнаружили две причины существования данного феномена. Во-первых, у игрока А может быть возможность инвестировать свои деньги (скажем, 1 доллар) сейчас и получить основную сумму плюс проценты и прирост капитала по ставке r, в сумме (1 + r), в следующем периоде (завтра, на следующей неделе, в следующем году или независимо от продолжительности периода). Во-вторых, может иметься определенный риск того, что игра закончится между текущим моментом и следующим предложением (как в случае внезапного завершения игры в любой момент времени в интервале от 3 до 5 минут в описанном выше аудиторном эксперименте). Если p — вероятность того, что игра продолжится, то у шанса получить 1 доллар в следующем периоде в текущий момент ожидаемая ценность равна всего лишь p.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг