Читаем Стратегические игры полностью

Далее рассмотрим второй пример игры с более содержательной историей. На рис. 4.2 представлена упрощенная версия одного розыгрыша в американском футболе. Нападающие пытаются продвинуть мяч вперед, чтобы повысить шансы забить филд-гол. У них есть четыре возможные стратегии: пробежка и три паса разной длины (короткий, средний и длинный). Чтобы сдерживать атаку, защитники могут использовать одну из трех стратегий: защита в случае пробежки и в случае паса и блиц против квотербека. Нападающие пытаются набрать как можно больше ярдов, тогда как защитники — помешать им это сделать. Предположим, у нас достаточно информации об основных сильных сторонах тех и других, для того чтобы оценить вероятность завершения различных розыгрышей и определить среднее количество набранных ярдов, которого можно было бы ожидать при каждой комбинации стратегий. Например, когда команда нападения выбирает стратегию «средний пас», а команда защиты отвечает стратегией «защита в случае паса», по нашим оценкам, выигрыш нападения составляет 4,5 набранных ярда, или +4,5[43]. «Выигрыш» защиты — 4,5 потерянных ярда, или −4,5. В других ячейках также показаны наши оценки количества ярдов, набранных или потерянных каждой командой.


Рис. 4.2. Один розыгрыш в американском футболе


Обратите внимание, что сумма выигрышей в каждой ячейке таблицы равна 0: когда нападающие набирают 5 ярдов, защитники теряют 5 ярдов, и наоборот: когда нападающие теряют 2 ярда, защитники набирают 2 ярда. Такая схема достаточно широко распространена в спорте, где интересы двух сторон прямо противоположны друг другу. Как отмечалось в главе 2, мы называем это игрой с нулевой (или иногда с постоянной) суммой. Вы должны помнить, что, согласно определению, игра с нулевой суммой представляет собой игру, в которой сумма выигрышей во всех ячейках постоянная величина, будь то 0, 6 или 1000. (В разделе 7 описывается игра, в которой сумма выигрышей двух игроков составляет 100.) Основная особенность игры с нулевой суммой состоит в том, что проигрыш одного игрока равен выигрышу другого.

2. Равновесие Нэша

Для анализа игр с одновременными ходами необходимо рассмотреть, как игроки выбирают действия. Вернемся к игре, представленной на рис. 4.1. Обратите внимание на тот ее исход, при котором Строка выбирает вариант «низко», а Столбец — «посредине», с выигрышами 5 для Строки и 4 для Столбца. Каждый игрок отдает предпочтение действию, которое обеспечит ему более высокий выигрыш, и при данном исходе делает такой выбор с учетом выбора соперника. Если Строка выбирает вариант «низко», может ли Столбец получить более высокий выигрыш, выбрав что-то другое, а не «посредине»? Нет, поскольку вариант «слева» обеспечивает ему выигрыш 2, а вариант «справа» — выигрыш 3 и оба не превышают выигрыш 4 в случае варианта «посредине». Стало быть, стратегия «посредине» — наилучший ответ Столбца на стратегию «низко», реализуемую Строкой. С другой стороны, если Столбец остановится на варианте «посредине», получит ли Строка более высокий выигрыш, предпочтя варианту «низко» какой-нибудь иной? И снова нет, потому что выигрыши от выбора варианта «вверху» (2), «высоко» (3) или «внизу» (4) не будут больше выигрыша Строки в случае выбора варианта «низко» (5). Следовательно, «низко» — наилучший ответ Строки на стратегию «посредине», применяемую Столбцом.

Эти два варианта выбора, «низко» для Строки и «посредине» для Столбца, представляют собой наилучший ответ игрока, сделавшего соответствующий выбор, на действие другого игрока. После такого выбора оба игрока не захотели бы по собственной инициативе переключаться на что-либо другое. Согласно определению некооперативной игры, игроки делают выбор независимо друг от друга; следовательно, такие односторонние изменения — все, что может предпринять каждый игрок. Но поскольку ни один из них к ним не склонен, было бы естественно называть данное положение вещей равновесием. В этом и состоит суть концепции равновесия Нэша.

Согласно несколько более формальной формулировке, равновесие Нэша[44] в игре представляет собой перечень стратегий (по одной на каждого участника), при котором ни один игрок не может увеличить выигрыш, выбрав другую стратегию из имеющихся в его распоряжении, если другие игроки придерживаются стратегий, оговоренных в этом перечне.

А. Дальнейшее разъяснение концепции равновесия Нэша
Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг