Читаем Стратегические игры полностью

U1. «В игре с последовательными ходами игрок, делающий ход первым, непременно выиграет». Это утверждение истинно или ложно? Обоснуйте свой ответ посредством нескольких кратких предложений и приведите пример, иллюстрирующий его.

U2. Сколько стратегий (исчерпывающих планов действий) в каждой из представленных ниже игр имеется в распоряжении каждого игрока? Перечислите все чистые стратегии каждого игрока.







U3. Определите для каждой из игр, представленных в упражнении U2, исход, полученный посредством равновесия обратных рассуждений, и полную равновесную стратегию каждого игрока.

U4. В Вашингтоне проходят дебаты по предложениям А и Б. Конгресс предпочитает предложение А, тогда как президент — предложение Б. Эти предложения не взаимоисключающие: оба могут стать законами или быть отклонены. Таким образом, существует четыре возможных исхода, имеющих следующий рейтинг (более высокий показатель означает более предпочтительный исход).



a) Ходы в этой игре выполняются по следующей схеме. Сначала Конгресс решает, принимать ли законопроект и должен ли он включать в себя предложение А, или Б, или оба. Затем президент решает, подписать ли законопроект или наложить на него вето. У Конгресса нет достаточного количества голосов для преодоления вето. Нарисуйте дерево этой игры и найдите равновесие обратных рассуждений.

b) Предположим, правила игры изменились: президент получает право постатейного вето. Таким образом, если Конгресс примет законопроект, содержащий оба предложения, президент может не только выбирать, подписать его или наложить вето, но и накладывать вето лишь на одно из предложений. Постройте новое дерево игры и найдите равновесие обратных рассуждений.

c) Объясните на интуитивном уровне, в чем разница между этими двумя равновесиями.

U5. Два игрока, Эми и Бет, играют в игру, в которой разыгрывается банка с сотней монет номиналом 1 цент. Игроки делают ходы по очереди; Эми ходит первой. Каждый раз, когда наступает очередь одной из участниц ходить, она берет из банки от 1 до 10 центов. Побеждает тот, после чьего хода банка опустеет.

a) Если игроки ведут игру оптимальным способом, то кто из них выиграет? Есть ли в этой игре преимущество первого хода? Объясните логику своих рассуждений.

b) Какие оптимальные стратегии (исчерпывающие планы действий) имеются в распоряжении каждого игрока?

U6. Рассмотрим несколько измененный вариант игры, представленной в упражнении U5. Теперь игрок, опустошивший банку, проигрывает.

a) Присутствует ли преимущество первого хода в этой игре?

b) Какие оптимальные стратегии есть в распоряжении каждого игрока?

U7. Кермит и Фоззи играют в игру с двумя банками, в каждой из которых находится по 100 одноцентовых монет. Игроки делают ходы по очереди; Кермит ходит первым. Всякий раз, когда наступает очередь игрока ходить, он берет из одной из банок от 1 до 10 центов. Побеждает тот, после чьего хода обе банки опустеют. (Обратите внимание, что, когда игрок достает оставшиеся монеты из второй банки, первая банка уже должна быть пустой в результате предыдущего хода кого-то из игроков.)

a) В этой игре имеет место преимущество первого или второго хода? Объясните, кто из игроков может обеспечить себе победу и каким образом. (Совет: упростите игру, начав с меньшего количества монет в каждой банке, и попытайтесь понять, применимы ли сделанные выводы в реальной игре.)

b) Какие оптимальные стратегии есть в распоряжении каждого игрока? (Совет: сначала проанализируйте исходную ситуацию, в которой в обеих банках одинаковое количество монет, затем когда их количество от 1 до 10 центов и наконец когда число монет свыше 10 центов.)

U8. Измените упражнение S8 таким образом, чтобы в нем было четыре льва.

a) Постройте дерево игры с выигрышами для этих четырех участников.

b) Какое равновесие обратных рассуждений имеет в ней место? Обязательно опишите стратегии, а не только выигрыши.

c) Дополнительный лев — это хорошо или плохо для раба? Обоснуйте свой ответ.

U9. Для того чтобы предоставить маме один день отдыха, отец планирует устроить своим детям, Барту и Кэсси, воскресную экскурсию. Барт предпочитает поход в парк развлечений (Р), а Кэсси — в музей науки (Н). Каждый ребенок получит 3 единицы полезности за более предпочтительное занятие и только 2 единицы — за менее предпочтительное. Отец — 2 единицы полезности за любое из занятий.

Чтобы определиться с планами на воскресенье, отец намерен сначала спросить Барта о его предпочтениях, а затем Кэсси, после того как она узнает, что выбрал Барт. Каждый ребенок может выбрать либо парк развлечений (Р), либо музей науки (Н). Если оба остановятся на одном и том же, то именно туда все и пойдут. Если возникнут разногласия, тогда отец примет окончательное решение. У него как у отца есть дополнительный вариант действий: он может предложить парк развлечений, музей науки или поход в горы, причем за поход получит 3 единицы полезности, а Барт и Кэсси по 1.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг