Читаем Стратегические игры полностью

Мы привели пример с ценообразованием в ресторанах, чтобы показать, как найти равновесие Нэша в игре, где стратегии представляют собой непрерывные переменные, такие как цены. Однако эту ситуацию целесообразно проанализировать более детально и объяснить кое-какие экономические аспекты стратегий ценообразования и прибыли при конкуренции между небольшим количеством компаний (в данном случае двух). На языке экономики такую конкуренцию называют «олигополия», от греческих слов, означающих «малое количество продавцов».

Для начала обратите внимание, что график наилучшего ответа каждой компании наклонен вверх. В частности, если один ресторан поднимает цену на 1 доллар, наилучший ответ другого ресторана — поднять цену на 0,25 доллара, или 25 центов. Когда один ресторан повышает цену, некоторые его клиенты переходят в другой ресторан, а это означает, что его конкурент может получить прибыль за счет новых клиентов посредством частичного повышения цены. Таким образом, ресторан, поднимающий цену, помогает конкуренту увеличить прибыль. В случае равновесия Нэша, при котором каждый ресторан назначает цену независимо от другого и исходя исключительно из собственной прибыли, он не учитывает дополнительное преимущество, которое создает для другого ресторана. Могут ли они объединить усилия и договориться о повышении цен, тем самым увеличив свою прибыль? Да. Предположим, два ресторана установили цены по 24 доллара каждый; стало быть, каждый из них получит 16 долларов прибыли на каждого из 2000 клиентов (2000 = (44 — 2 × 24 + 24) × 100), которых ресторан обслуживает за месяц, следовательно, общий объем прибыли составит 32 000 долларов в месяц.

Эта игра в ценообразование в точности такая же, как и дилемма заключенных, рассмотренная в главе 4, но теперь стратегии носят непрерывный характер. В истории из главы 4 у мужа и жены было искушение предать друг друга и признаться в совершении преступления в полиции, однако, сделав это, оба бы получили более длинные тюремные сроки (худшие исходы игры). Аналогично более прибыльная цена 24 доллара не является равновесием Нэша. Каждый из ресторанов, произведя расчеты, попытается предложить клиентам более низкую цену. Предположим, Yvonne’s начнет с цены 24 доллара. Воспользовавшись формулой наилучших ответов, можно определить, что Xavier’s при этом установит цену 15 + 0,25 × 24 = 21. Далее Yvonne’s отреагирует своим наилучшим ответом: 15 + 0,25 × 21 = 20,25. В случае продолжения этого процесса цены обоих ресторанов сведутся к равновесию Нэша, то есть к 20 долларам.

Но какая цена выгоднее для обоих ресторанов? При наличии симметрии допустим, что оба заведения назначат одну и ту же цену Р. Тогда прибыль каждого ресторана равна:

πx = πy = (P — 8) (44 — 2P + P) = (P — 8) (44 — P) = — 352 + 52P — P2.

Оба могут выбрать Р для максимизации формулы. Воспользовавшись уравнением, представленным в разделе 1.А, мы видим, что решение: Р = 52/2 = 26. Полученная в результате прибыль каждого ресторана составит 32 400 долларов в месяц.

На языке экономики соглашение о повышении цен до уровня, оптимального для обеих сторон, называется картелем. Высокие цены наносят ущерб потребителям, поэтому органы государственного регулирования США обычно пытаются предотвратить образование картелей и заставить компании конкурировать друг с другом. Явный сговор по поводу цен находится вне закона, но негласный сговор все же может иметь место в повторяющейся дилемме заключенных (мы проанализируем повторяющиеся игры такого рода в главе 10)[61].

Сговор необязательно приводит к повышению цен. В нашем примере, если один ресторан снизит цену, его объем продаж увеличится отчасти потому, что он переманит некоторых клиентов от конкурента, поскольку продукты (блюда) двух ресторанов взаимозаменяемы. В других контекстах две компании могут продавать взаимодополняющие продукты, скажем программное и аппаратное обеспечение. В этом случае, если одна из них снижает цену, объем продаж в обеих компаниях возрастает. При равновесии Нэша, когда две фирмы действуют независимо друг от друга, они не учитывают выгоду, которую принесло бы обеим снижение цен. Следовательно, они поддерживают цены на более высоком уровне, чем если бы координировали свои действия. Сотрудничество между такими компаниями привело бы к снижению цен, что было бы выгодно и клиентам.

Конкуренция не всегда подразумевает использование цен в качестве стратегических переменных. Например, рыболовные флотилии могут конкурировать за более крупный улов. В таком случае имеет место конкуренция по количеству, а не по цене, рассмотренная в данном разделе. Мы опишем конкуренцию по количеству чуть ниже, а также в нескольких упражнениях, размещенных в конце главы.

В. Политическая реклама
Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг