Читаем Стратегические игры полностью

Наш второй пример взят из политики. Он требует немного больше математических выкладок, чем мы обычно используем, но мы объясним интуитивные идеи, лежащие в их основе, с помощью слов и графиков.

Рассмотрим выборы с участием двух партий или двух кандидатов. Каждая сторона пытается отнять голоса избирателей у другой стороны посредством рекламы — либо позитивных рекламных объявлений, подчеркивающих достоинства самой партии или кандидата, либо негативной рекламы, сфокусированной на недостатках соперника. Для простоты будем исходить из предположения, что изначально избиратели не владеют никакой информацией и не отдают предпочтения ни одной из партий, поэтому формируют свое мнение исключительно под влиянием рекламы. (Многие сказали бы, что это точное описание американской политики, но более продвинутые исследования в области политологии подтверждают тот факт, что информированные, стратегически мыслящие избиратели все же существуют. Мы проанализируем их поведение более подробно в главе 15.) Для того чтобы упростить ситуацию еще больше, допустим, что доля избирателей, голосующих за партию, равна доле партии в общей сумме расходов на рекламу избирательной кампании. Назовем партии или кандидатов Л и П; если Л тратит на рекламу x миллионов долларов, а П — y миллионов долларов, то Л получит долю x / (x + y) голосов, а П — у / (x + y) голосов. Читатели, заинтересовавшиеся этой областью практического применения теории игр, найдут более общее описание соответствующих методов в специальной литературе по политологии.

Сбор средств на оплату такой рекламы требует определенных затрат; к их числу относятся деньги на рассылку писем и телефонные звонки; время и труд кандидатов, партийных лидеров и активистов; будущее политическое вознаграждение для лиц, сделавших крупные пожертвования, а также возможные политические издержки в случае, если такое вознаграждение станет достоянием гласности и повлечет за собой скандал. Для простоты анализа предположим, что все эти затраты пропорциональны прямым затратам на проведение кампании х и у. В частности, допустим, что выигрыш партии Л оценивается как процент голосов за вычетом расходов на рекламу: 100x (x + y) — x. Аналогичным образом выигрыш партии П составляет: 100у / (x + y) — у.

Теперь можем определить наилучшие ответы. Поскольку это нельзя сделать без вычислений, выведем математическую формулу, а затем объясним ее общий смысл на интуитивном уровне. Для заданной стратегии х партии Л партия П выбирает стратегию у, чтобы максимизировать свой выигрыш. Условие первого порядка можно найти, зафиксировав значение х и приравняв производную от 100у / (x + y) — у по у к нулю. В итоге получим уравнение 100x / (x + y)2 — 1 = 0, или . На рис. 5.2 показан график этой функции, а также аналогичный график функции наилучшего ответа партии Л, а именно .


Рис. 5.2. Наилучшие ответы и равновесие Нэша в игре «политическая реклама»


Посмотрите на кривую наилучших ответов партии П. По мере роста значения переменной x партии Л значение переменной у партии П сначала немного повышается, а затем снижается. Если другая партия размещает мало рекламных материалов, то реклама первой партии обеспечит высокую отдачу в виде голосов избирателей, поэтому на незначительное увеличение расходов другой партии на рекламу целесообразно ответить еще более существенным увеличением собственных расходов на рекламу в целях усиления конкуренции. Однако если другая партия уже вкладывает в рекламу солидные средства, то реклама первой партии обеспечит мизерную отдачу по отношению к затратам на нее, поэтому лучше ответить на повышение рекламных расходов другой партии сокращением собственных расходов.

Оказывается, кривые наилучших ответов двух партий пересекаются в точках максимума. Опять же, некоторые алгебраические манипуляции с уравнениями этих двух кривых позволяют получить точные величины равновесных значений x и y. Вы можете убедиться, что в данном случае значение каждой из переменных x и y равно 25, или 25 миллионов долларов. (Предполагается, что речь идет о выборах в Конгресс; выборы в Сенат и президентские выборы обходятся в наши дни гораздо дороже.)

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг