Читаем Стратегические игры полностью

Предположим, игрок А полагает, что существует вероятность p того, что выигрыши игрока Б при выборе стратегий «налево» и «направо» противоположны выигрышам, представленным на рис. 5.4; следовательно, (1 — p) — это вероятность того, что выигрыши игрока Б соответствуют информации на рисунке. Поскольку игрок А вынужден действовать, не зная фактических выигрышей игрока Б, он должен применить свою стратегию как «наилучшую в среднем». В данном примере расчеты достаточно просты, так как в каждом случае у игрока Б есть доминирующая стратегия; единственная проблема для игрока А — то, что в двух разных случаях у игрока Б разные доминирующие стратегии. С вероятностью (1 — p) доминирующая стратегия игрока Б — «налево» (случай, показанный на рисунке), а с вероятностью p его доминирующая стратегия — «направо» (противоположный случай). Таким образом, если игрок А выберет «вверх», то с вероятностью (1 — p) он будет играть против Б, применившего «налево», а значит, получит выигрыш 9; с вероятностью p игроку А предстоит вступить в игру с игроком Б, выбравшим «справа», и, стало быть, он получит выигрыш 8. Итак, статистическое, или взвешенное по вероятности среднее значение выигрыша игрока А при выборе стратегии «вверх» составляет 9(1 — p) + 8p. Аналогично статистическое, или взвешенное по вероятности, среднее значение выигрыша игрока А при использовании стратегии «вниз» равно 10(1 — p) — 1000p. Следовательно, для игрока А предпочтительнее стратегия «вверх», если

9(1 — p) + 8p > 10(1 — p) — 1000p, или p > 1 / 1009.

Таким образом, при наличии даже малейшей вероятности того, что выигрыши игрока Б противоположны выигрышам на рис. 5.4, игроку А лучше выбрать стратегию «вверх». В данном случае правильно выполненный анализ, основанный на рациональном поведении, не противоречит ни интуитивным догадкам, ни экспериментальным данным.

При выполнении этих вычислений мы исходили из предположения, что, столкнувшись с неопределенностью в отношении выигрышей, игрок А рассчитает их статистическое среднее значение в случае различных действий и выберет действие, обеспечивающее самое высокое среднестатистическое значение выигрыша. Это неявное допущение хотя и соответствует цели данного примера, но сопряжено с определенными проблемами. Например, оно подразумевает, что человек, столкнувшийся с двумя ситуациями, в одной из которых он выиграет или проиграет 10 долларов с вероятностью 50 на 50, а в другой выиграет 10 001 доллар и проиграет 10 000 долларов с той же вероятностью, должен выбрать вторую ситуацию, поскольку она обеспечивает среднестатистический выигрыш в размере 50 центов (1/2 × 10 001 — 1/2 × 10 000), тогда как первая принесет нулевой выигрыш (1/2 × 10 — 1/2 × 10). Однако многие сочли бы, что вторая ситуация гораздо рискованнее, а потому предпочли бы первую. Решить эту проблему достаточно легко. В приложении к главе 7 показано, как создание нелинейной шкалы выигрышей, соответствующих денежным суммам, позволяет человеку, принимающему решение, предусмотреть как риск, так и прибыль. А в главе 8 продемонстрировано, как можно использовать эту концепцию для того, чтобы понять, как люди реагируют на риск в своей жизни — например, разделяют его с другими или покупают страховку.

Б. Множественность равновесий Нэша

Еще одно критическое замечание в адрес концепции равновесия Нэша строится на наблюдении, что во многих играх присутствует множество равновесий Нэша, а значит, данная концепция неспособна определить исходы игры достаточно точно для того, чтобы давать однозначные прогнозы. Данный аргумент не требует от нас отказа от концепции равновесия Нэша, а скорее подразумевает, что при необходимости получить однозначный прогноз на основании нашей гипотезы мы должны включить некий критерий, который поможет нам решить, какое именно из множества равновесий Нэша выбрать.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг