Читаем Стратегические игры полностью

Зачем вводить эту дополнительную концепцию, и что она нам дает? Что касается первого вопроса, полезно знать, насколько можно сузить совокупность возможных исходов игры на основании одной лишь рациональности игроков, не прибегая к правильности ожиданий относительно фактического выбора игрока. Иногда можно определить, что игрок не выберет то или иное действие или действия, даже если нельзя вычислить, какое именно действие он все же выберет. Ответ на второй вопрос зависит от контекста. Порой рационализация вообще не позволяет сократить совокупность исходов игры. Именно так было в примере три на три, представленном на рис. 5.5. Подчас рационализация позволяет это сделать только до определенной степени, но не до равновесия Нэша, если оно в игре всего одно, или не до совокупности равновесий Нэша, если их в игре несколько. Примером такой ситуации может служить расширенный до матрицы четыре на четыре предыдущий пример, который рассматривается в разделе 3.А ниже. Иногда сокращение совокупности возможных исходов игры приводит к определению единственного равновесия Нэша, причем в подобных случаях мы имеем его более веское обоснование, опирающееся исключительно на рациональность, без предположений о правильности ожиданий. Ниже в разделе 3.Б представлен пример игры с конкуренцией по количеству, в котором аргументация на основе концепции рационализации позволяет найти в ней единственное равновесие Нэша.

А. Применение концепции рационализации

Рассмотрим игру на рис. 5.6, аналогичную той, что приведена на рис. 5.5, но с дополнительной стратегией на каждого игрока[65]. Как отмечалось выше, девять комбинаций стратегий, в которые входит одна из первых трех стратегий для каждого из игроков, можно обосновать посредством цепочки убеждений игроков в отношении убеждений друг друга. Это верно и в увеличенной матрице. Но подходит ли такой способ для стратегий R4 и C4?


Рис. 5.6. Рационализируемые стратегии


Может ли Строка исходить из убеждения, что Столбец выберет стратегию C4? В его основе должны лежать убеждения Столбца в отношении выбора Строки. Могут ли они сделать стратегию С4 наилучшим ответом Столбца? Нет. Если Столбец полагает, что Строка сыграет R2, его наилучший ответ С2. Если Столбец считает, что Строка предпочтет R3, то его наилучший ответ С3. А если Столбец убежден, что Строка выберет R4, тогда его наилучший ответ либо С1, либо С3. Следовательно, С4 не может быть наилучшим ответом Столбца[66]. Это означает, что Строка, зная о рациональности Столбца, ни в коем случае не припишет ему выбор стратегии С4. Стало быть, Строка не должна исходить из убеждения, что Столбец сыграет С4.

Обратите внимание, что хотя стратегия С4 не может быть наилучшим ответом, она не является доминируемой по отношению к стратегиям С1, С2 и С3. Для Столбца она предпочтительнее стратегии С1 против стратегии Строки R3, предпочтительнее стратегии С2 против стратегии Строки R4 и предпочтительнее стратегии С3 против стратегии Строки R1. Если стратегия все же доминируемая, она тоже не может быть наилучшим ответом. Таким образом, «стратегия, которая не может быть наилучшим ответом», — более общая концепция, чем «доминируемая стратегия». Исключение таких стратегий возможно даже тогда, когда исключение доминируемых стратегий невозможно. Следовательно, исключение стратегий, которые не могут быть наилучшим ответом, способно сузить совокупность вероятных исходов игры в большей степени, чем исключение доминируемых стратегий[67].

Исключение стратегий, которые не могут быть наилучшим ответом, также можно выполнять в итеративном режиме. Поскольку рациональный игрок Строка не может исходить из убеждения, что рациональный игрок Столбец выберет стратегию С4, рациональный игрок Столбец должен это предвидеть. Учитывая, что R4 — наилучший ответ Строки только на стратегию С4, Столбец не должен думать, что Строка сыграет R4. Следовательно, R4 и С4 не могут входить в набор рационализируемых стратегий. Концепция рационализации действительно позволяет сократить совокупность возможных исходов данной игры.

Если в игре есть равновесие Нэша, оно будет рационализируемым и его можно подтвердить посредством простой системы убеждений, состоящей из одного цикла, как в представленном выше разделе 2.В. Но в более общем плане, даже если в игре нет равновесия Нэша, она может иметь рационализируемые исходы. Возьмем в качестве примера игру два на два, полученную из игры на рис. 5.5 или рис. 5.6, в которой оставлены только стратегии R1 и R3 для Строки и С1 и С3 для Столбца. Легко увидеть, что в этой игре нет равновесия Нэша в чистых стратегиях. Однако все четыре ее исхода рационализируемы посредством такой же цепочки убеждений, как выстроенная выше и охватывающая эти стратегии.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг