Теперь перейдем ко второму циклу рассуждений. Когда владелец первой лодки ограничит варианты выбора значений
Третий цикл рассуждений сужает диапазоны значений еще больше. Поскольку значение
Эту последовательность циклов рассуждений можно продолжать сколько угодно, но уже сейчас очевидно, что последовательное сужение диапазонов значений двух показателей сводит эти значения к равновесию Нэша,
Эту аргументацию следует отличать от прежней, основанной на последовательности наилучших ответов. Тогда ход рассуждений выглядел следующим образом. Начнем с любой стратегии одного из игроков, скажем
Цепочка рассуждений в прежней аргументации также сходится к равновесию Нэша, но в ней есть один недостаток. Речь идет об игре с одновременными ходами, разыгрываемой только раз. В такой ситуации невозможно, чтобы один игрок отреагировал на выбор другого игрока, после чего первый игрок снова предпринял ответное действие и т. д. Если бы такая динамика игры допускалась, разве игроки не предвидели бы реакцию друг друга и не предприняли бы совсем другие действия?
Аргументация на основе концепции рационализации представляет собой нечто иное. В ней четко учитывается тот факт, что игра проходит только раз и сводится к одновременному выполнению ходов. Все размышления относительно цепочки наилучших ответов выполняются с опережением событий, а все последующие циклы рассуждений и ответных действий носят сугубо концептуальный характер. Игроки реагируют не на фактический выбор, а лишь на расчетные значения того выбора, который так и не будет сделан. Весь процесс протекает исключительно в головах игроков.
4. Эмпирические данные о равновесии Нэша
В главе 3
, посвященной анализу эмпирических данных об играх с последовательными ходами и методу обратных рассуждений, мы представили данные, полученные в ходе наблюдений за играми, происходящими в реальной жизни, и играми, специально разработанными для проверки теории в лабораторных условиях. Там же мы выделили различные достоинства и недостатки двух методов оценки достоверности прогнозов, полученных посредством поиска равновесия методом обратных рассуждений. Аналогичные вопросы возникают и в связи с получением и интерпретацией эмпирических данных относительно равновесия Нэша в играх с одновременными ходами.В реальных играх делаются крупные ставки, и в основном в них участвуют опытные игроки, обладающие знаниями и стимулами для применения эффективных стратегий. Но в таких ситуациях присутствует много факторов, выходящих за рамки того, что изучает теория. Например, в реальных играх трудно отслеживать количественные выигрыши, которые получили бы игроки при всех возможных комбинациях стратегий. Поэтому, если их поведение не подтверждает теоретические прогнозы, невозможно определить, обусловлено ли это ошибочностью теории или тем, что какие-то иные факторы превосходят стратегические соображения.