Читаем Стратегические игры полностью

В ходе лабораторных экспериментов эти факторы пытаются учитывать, чтобы обеспечить более точную проверку теории. Но организаторы экспериментов зачастую привлекают неопытных игроков и предоставляют им слишком мало времени и относительно слабые стимулы для изучения игры. Столкнувшись с новой игрой, большинство из нас поначалу с трудом ориентируется в ней и пробует играть бессистемно. По этой причине несколько ее первых раундов в условиях эксперимента могут представлять собой этап обучения, а не равновесие, которое нашел бы в игре опытный игрок. Обычно такую неопытность и обучение учитывают, исключая из рассмотрения данные первых нескольких раундов игры, однако этап обучения может длиться дольше, чем одно утро или вторая половина дня, что зачастую составляет предельную продолжительность лабораторных сеансов.

А. Лабораторные эксперименты

За три прошедших десятилетия ученые провели множество лабораторных исследований в целях проверки поведения людей в определенных интерактивных стратегических ситуациях. В частности, исследователи пытаются найти ответ на вопрос: «Выбирают ли участники игры стратегии равновесия Нэша?» Проанализировав эту работу, Дуглас Дэвис и Чарльз Холт пришли к выводу, что в относительно простых одноходовых играх с единственным равновесием Нэша оно «обретает значительную притягательную силу… после нескольких повторений игры с разными партнерами»[71]. Однако успех этой теории носит переменный характер в более сложных ситуациях, например при наличии множества равновесий Нэша, когда эмоциональные факторы выводят выигрыши за пределы оговоренных денежных сумм, когда для поиска равновесия Нэша требуются более сложные расчеты или когда игра повторно проводится с одними и теми же партнерами. Ниже представлен краткий анализ эффективности равновесия Нэша в нескольких подобных ситуациях.


I. Выбор из множества равновесий Нэша. В разделе 2.Б приведено несколько примеров, показывающих, что иногда фокальные точки помогают игрокам выбрать из множества равновесий Нэша одно. Игрокам не удается скоординировать свои действия в 100 процентах случаев, однако обстоятельства зачастую позволяют им добиться гораздо большей координации действий, чем при случайном выборе из всей совокупности возможных равновесных стратегий. Ниже мы представляем координационную игру с одним интересным свойством: равновесие, обеспечивающее самый высокий выигрыш всем ее участникам, при этом и самое рискованное в том смысле, о котором шла речь выше в разделе 2.А.

Джон Ван Хайк, Реймонд Батталио и Ричард Бейл описывают игру с участием 16 игроков, в которой каждый из них одновременно выбирает уровень «усилий» от 1 до 7. Индивидуальные выигрыши зависят от «результата» всей группы, который является функцией от минимального уровня усилий, выбранного любым ее членом, за вычетом затрат на эти усилия. В игре ровно семь равновесий Нэша в чистых стратегиях: любой исход, при котором все игроки выбирают один и тот же уровень усилий, представляет собой равновесие. Максимальный выигрыш (1,30 доллара на одного игрока) будет получен в случае, если все участники игры выберут уровень усилий 7, тогда как минимальный (0,70 доллара на одного игрока) — при выборе всеми игроками уровня усилий 1. Равновесие, обеспечивающее самый высокий выигрыш, — естественный кандидат на роль фокальной точки, но при этом существует риск выбрать самый высокий уровень усилий: если хотя бы один игрок выберет уровень усилий ниже вашего, то ваши дополнительные усилия будут потрачены зря. Например, если вы предпочтете вариант 7 и минимум один игрок вариант 1, вы выиграете всего 0,10 доллара — гораздо меньше, чем в случае наихудшего равновесного выигрыша в размере 0,70 доллара. Это заставляет игроков волноваться по поводу того, выберут ли другие участники игры максимальный уровень усилий; в итоге большим группам, как правило, не удается скоординировать свои действия так, чтобы обеспечить самое выгодное равновесие. Несколько игроков неизбежно выбирают более низкий уровень усилий, и в последующих раундах игра сводится к равновесию с самым низким уровнем усилий[72].


Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг