Читаем Стратегические игры полностью

Тогда как в одних играх может быть слишком много равновесий Нэша, в других они могут отсутствовать вообще. Мы приводили пример подобной игры в разделе 7 главы 4, а также уточнили, что равновесие Нэша можно восстановить, расширив концепцию стратегии на случайные комбинации стратегий. В главе 7 мы объясним и проанализируем равновесия Нэша в смешанных стратегиях. На более высоких уровнях теории игр существуют и более сложные примеры игр, в которых равновесия Нэша нет и в смешанных стратегиях. Однако такая дополнительная сложность не имеет отношения к рассматриваемым в данной книге типам анализа и областям применения, поэтому мы не будем затрагивать здесь эту тему.

В. Требования рациональности в равновесии Нэша

Как вы уже знаете, равновесие Нэша можно рассматривать как систему стратегических вариантов выбора каждого игрока, а также его убеждений в отношении выбора других игроков. В случае равновесия 1) выбор каждого игрока должен обеспечивать ему лучший выигрыш с учетом его убеждения в отношении выбора других игроков; 2) убеждение каждого игрока должно быть правильным, то есть его фактический выбор должен быть именно таким, каким он должен быть, по его твердому убеждению. Такова естественная интерпретация требований о взаимной согласованности рационального выбора отдельных игроков. Если у всех игроков есть общее знание того, что они рациональны, то как может один из них иметь рациональные убеждения в отношении выбора других игроков, не соответствующие рациональной реакции на его собственные действия?

Для того чтобы изучить этот вопрос, рассмотрим игру три на три, представленную на рис. 5.5. Анализ наилучших ответов позволяет быстро определить, что в ней всего одно равновесие Нэша, а именно R2, C2, обеспечивающее выигрыш 3, 3. В этом равновесии Строка выбирает вариант R2, исходя из убеждения, что Столбец сыграет C2. Почему Строка в этом убеждена? Потому что она знает Столбца как рационального игрока, но в то же время она должна считать, что Столбец убежден в ее выборе варианта R2 по той причине, что вариант С2 не будет его наилучшим выбором, если бы он полагал, что Строка сыграет либо R1, либо R3. Таким образом, суть этого утверждения состоит в том, что убеждения, полученные в результате рационального процесса формирования, должны быть правильными.


Рис. 5.5. Обоснование выбора посредством цепочки убеждений и ответных действий


Проблема такой аргументации состоит в том, что она ограничена одним циклом рассуждений об убеждениях. Продолжив их, мы можем обосновать и другие комбинации вариантов выбора. Например, можно рационально обосновать выбор Строкой варианта R1. Для этого отметим, что R1 — лучший выбор Строки в случае, если она убеждена, что Столбец сыграет С3. Почему Строка в этом убеждена? Потому что уверена, что Столбец убежден в том, что она выберет R3. Строка обосновывает это убеждение, считая, что Столбец убежден в том, что Строка убеждена в том, что Столбец сыграет С1, будучи убежденным в том, что Строка предпочтет вариант R1, будучи, в свою очередь, убежденной в том, что… Каждое звено этой цепочки убеждений абсолютно рационально.

Таким образом, рациональность сама по себе не объясняет равновесия Нэша. Существуют более сложные доводы такого рода, действительно позволяющие обосновать особый вид равновесия Нэша, при котором игроки могут поставить свои стратегии в зависимость от поддающегося наблюдению инструмента рандомизации (случайного выбора). Однако мы оставим эту тему для более углубленного изучения и сформулируем в следующем разделе более простую концепцию, отражающую то, что логически вытекает из общего знания игроков только об их рациональности.

3. Рационализация

Какие стратегические варианты выбора в играх можно обосновать, исходя исключительно из рациональности? В матрице игры на рис. 5.5 мы можем объяснить любую пару стратегий, по одной на каждого игрока, посредством применения той же логики, что и в разделе 2.В. Иными словами, можем обосновать любую из девяти возможных комбинаций. Следовательно, рациональность в чистом виде не позволяет нам сократить совокупность вероятных исходов игры или вообще спрогнозировать их. Присуще ли это всем играм? Нет. Например, если стратегия доминируемая, ее можно исключить из рассмотрения на основе одной только рациональности. А когда игроки осознают, что их соперники, будучи рациональными, не выберут доминируемые стратегии, исходя из такого общего знания можно выполнить итеративное исключение доминируемых стратегий. Лучшее ли это из доступных действий? Нет. Можно продолжить дальнейшее исключение стратегий, воспользовавшись несколько более сильным свойством, чем доминируемость в чистых стратегиях. Оно определяет стратегии, которые не могут быть наилучшим ответом. Стратегии, оставшиеся после такой процедуры исключения, называются рационализируемыми, а сама концепция — рационализацией.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг