В последнее время теория игр стала самым предпочтительным инструментом изучения политических систем и институтов. Как мы увидим в главе 15
, она показала, как в погоне за чьими-то целями могут осуществляться стратегические манипуляции в ходе голосования и определения повестки дня в комитетах и на выборах. В четвертой части книги представлены примеры практического применения равновесия Нэша при проведении аукционов, голосований и переговоров. Кроме того, в главе 14 мы приводим свой учебный пример, посвященный Карибскому ракетному кризису.Некоторые критики не признают ценности концепции равновесия Нэша, заявляя, что аналогичное объяснение тех же явлений можно получить с помощью уже известных общих экономических принципов, политологии и т. д. Отчасти они правы. Ряд подобных аналитических инструментов существовал еще до появления данной концепции. Например, равновесие во взаимодействии между двумя компаниями, устанавливающими цены, о котором шла речь в разделе 1
данной главы, известно в экономике уже более 100 лет. Равновесие Нэша можно считать общей формулировкой концепции равновесия, применимой ко всем играм. Некоторые теории стратегического голосования сформулированы еще в XVIII столетии, а представления о достоверности можно найти в «Истории Пелопонесской войны» Фукидида. Однако равновесие Нэша позволяет унифицировать все эти области применения, а значит, способствует формированию новых областей.Кроме того, развитие теории игр обусловило появление огромного количества новых идей и областей применения, не существовавших ранее, например: как возможность нанести второй удар уменьшает страх перед внезапным нападением; как разные правила проведения аукционов влияют на характер предложения цены и доход продавца; как правительства могут успешно манипулировать фискальной и монетарной политикой с тем, чтобы добиться переизбрания даже тогда, когда опытные избиратели знают об этих попытках, и т. д. Если бы все эти задачи можно было решить с помощью ранее известных подходов, это бы уже давно было сделано.
II. Реальные примеры обучения.
Напоследок предлагаем вашему вниманию интересный пример равновесия и процесса обучения в реальной игре Главная лига бейсбола. В ней очень высокие ставки, а игроки участвуют более чем в 100 матчах в год, что создает сильную мотивацию и благоприятные возможности для обучения. Стивен Гулд обнаружил следующий замечательный пример[80]. На протяжении большей части XX столетия максимальное значение средних коэффициентов результативности отбивания, зафиксированных на протяжении бейсбольного сезона, неизменно снижалось. Скажем, в прошлом игроки обеспечивали средний коэффициент результативности отбивания 0,400 гораздо чаще, чем сейчас. Почитатели истории бейсбола часто объясняют такое снижение, с ностальгией восклицая: «В те времена были выдающиеся игроки!» Если на секунду задуматься, сразу же возникает вопрос: почему тогда не было выдающихся питчеров, способных удерживать средний коэффициент результативности отбивания на низком уровне? Однако Гулд опровергает подобные доводы посредством более системного подхода, указывая на то, что следует анализировать все значения среднего коэффициента результативности отбивания, а не только самые высокие. В настоящее время худшие показатели далеко не такие низкие, как раньше; кроме того, сейчас в командах Главной лиги гораздо меньше хиттеров со средним коэффициентом результативности отбивания 0,150, чем раньше. Гулд утверждает, что общее сокращениеКогда бейсбол был очень молодым, методы игры еще не стандартизировались настолько, чтобы это могло помешать проделкам лучших игроков. Вилли Килер мог «бить туда, где никого нет» (и набрать средний коэффициент 0,432 в 1897 году), потому что филдеры еще не знали, где им следует находиться. Постепенно игроки осваивали