Читаем Стратегические игры полностью

Теоретические замечания в адрес концепции равновесия Нэша гласят, что она неадекватно учитывает риск, что от нее мало пользы, поскольку во многих играх присутствует множество равновесий Нэша, и что ее невозможно обосновать только рациональностью. Во многих случаях более полное описание игры и ее структуры выигрышей или уточнение самой концепции равновесия Нэша может привести к составлению более точных прогнозов или уменьшению количества возможных равновесий. Концепция рационализации основана на исключении стратегий, которые не могут быть наилучшим ответом, для получения совокупности рационализируемых исходов. Когда в игре есть равновесие Нэша, этот исход будет рационализируемым, однако рационализация позволяет спрогнозировать равновесные исходы и в играх, где равновесие Нэша отсутствует.

Согласно результатам лабораторных экспериментов с концепцией равновесия Нэша, координация в играх со множеством равновесий Нэша в значительной мере зависит от наличия общего культурного опыта. Повторное проведение некоторых игр показывает, что игроки учатся в процессе накопления опыта и со временем начинают выбирать стратегии, максимально близкие к равновесию Нэша. Кроме того, прогнозы равновесий точны только в случае, если исходные предположения экспериментатора соответствуют истинным предпочтениям игроков. Практическое применение теории игр помогло экономистам и политологам понять ряд важных аспектов поведения потребителей, компаний, избирателей, а также законодательных и правительственных органов.

Ключевые термины

График наилучших ответов

Непрерывные стратегии

Правила наилучших ответов

Равновесие квантильных откликов

Рационализация

Рационализируемые стратегии

Стратегии, которые не могут быть наилучшим ответом

Уточнения

Упражнения с решениями

S1. В игре с политической рекламой, о которой шла речь в разделе 1.Б, партия Л выбирает рекламный бюджет в размере x (миллионов долларов), а партия П — в размере y (миллионов долларов). Мы показали, что правила наилучших ответов в этой игре таковы: для партии П и  для партии Л.

a) Каким будет наилучший ответ партии П, если партия Л потратит на рекламу 16 миллионов долларов?

Используйте указанные выше правила наилучших ответов для подтверждения того, что рекламные бюджеты, обеспечивающие равновесие Нэша, составляют: x = y = 25, или 25 миллионов долларов.

S2. В игре с ценообразованием в ресторанах, представленной на рис. 5.1, функции потребительского спроса на блюда в ресторанах Xavier’s (Qx) и Yvonne’s (Qy) определены как Qx = 44 — 2Px + Py и Qy = 44 — 2Py + Px. Кроме того, прибыль каждого ресторана зависит от затрат на обслуживание каждого клиента. Предположим, ресторану Yvonne’s удастся их сократить до 2 долларов на одного клиента, полностью отказавшись от официантов (клиенты сами выбирают блюда у стойки, а несколько оставшихся работников убирают посуду со столов). Ресторан Xavier’s по-прежнему несет расходы в размере 8 долларов на одного клиента.

a) Вычислите заново правила наилучших ответов и цены в соответствии с равновесием Нэша для этих двух ресторанов с учетом изменения объема затрат.

b) Постройте график двух кривых наилучших ответов и опишите различия между ним и графиком, представленным на рис. 5.1. В частности, какая линия сместилась, куда и насколько? Объясните почему.

S3. В Яппи-Тауне два продуктовых магазина: La Boulangerie, который продает хлеб, и La Fromagerie, который торгует сыром. Производство буханки хлеба обходится в 1 доллар, а фунта сыра — в 2 доллара. Если цена La Boulangerie составляет P1 долларов за буханку хлеба, а La Fromagerie — P2 доллара за фунт сыра, то их недельные объемы продаж, Q1 буханок хлеба и Q2 фунтов сыра, описываются следующими уравнениями:

Q1 = 14 — P1 — 0,5P2, Q2 = 9–0,5P1 — P2.

a) Запишите прибыль каждого магазина как функцию P1 и P2 (в следующих упражнениях мы для краткости будем называть ее функцией прибыли). Затем установите соответствующие правила наилучших ответов. Постройте график кривых наилучших ответов и определите цены, соответствующие равновесию Нэша в этой игре.

b) Предположим, оба магазина вступят в сговор и совместно установят цены, позволяющие максимизировать общую сумму своих прибылей. Определите эти цены.

c) Дайте короткое интуитивное объяснение различий между ценами в случае равновесия Нэша и ценами, максимизирующими общую прибыль. Почему максимизация общей прибыли не является равновесием Нэша?

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг