Читаем Стратегические игры полностью

Возмущенные монополией DTC, несколько компаний по добыче алмазов и крупных ретейлеров создали совместное предприятие под названием Adamantia в качестве конкурента DTC на оптовом рынке алмазов. Теперь оптовая цена алмазов определяется по формуле P = 120 — QDTC — QADA. Предположим, Adamantia несет издержки в размере 12 (сотен долларов) на один алмаз высокого качества.

b) Запишите функцию прибыли компаний DTC и Adamantia. Какое количество алмазов поставляет на оптовый рынок каждая из них в случае равновесия? Какую оптовую цену алмазов подразумевает такое количество? Какую прибыль получит каждый поставщик в такой дуополии?

c) Опишите различия между ситуацией на оптовом рынке алмазов в случае дуополии с участием DTC и Adamantia и монополии DTC. Что произойдет с объемом поставок алмазов на рынок и рыночной ценой в связи с выходом на него Adamantia? Что произойдет с совокупной прибылью компаний DTC и Adamantia?

U2. В городе Харкинсвилль есть два кинотеатра: Modern Multiplex, осуществляющий премьерные показы, и Sticky Shoe, демонстрирующий фильмы, вышедшие в прокат ранее, по более низкой цене. Спрос на фильмы в Modern Multiplex описывается формулой QMM = 14 — PMM + PSS, а в Sticky Shoe — формулой QSS = 8–2PSS + PMM, где цены измеряются в долларах, а количество — в сотнях кинозрителей. В кинотеатре Modern Multiplex объем затрат на одного зрителя составляет 4 доллара, а в Sticky Shoe — всего 2 доллара.

a) На основании уравнений спроса определите, какие услуги предоставляют кинотеатры Modern Multiplex и Sticky Shoe — взаимозаменяющие или взаимодополняющие.

b) Запишите функцию прибыли каждого кинотеатра, выраженную через PSS и PMM. Определите правило наилучших ответов для каждого кинотеатра.

c) Определите цену, количество и прибыль каждого кинотеатра в соответствии с равновесием Нэша.

d) Какими бы были значения цены и количества для каждого кинотеатра, если бы они вступили в сговор в целях максимизации общей прибыли на этом рынке? Почему исход, основанный на сговоре, не будет равновесием Нэша?

U3. Перенесемся на десять лет в будущее в ситуации, представленной в упражнении S3. Спрос на хлеб и сыр в Яппи-Тауне снизился, и два магазина, La Boulangerie и La Fromagerie, выкупила третья компания — L’Épicerie. Производство буханки хлеба по-прежнему обходится в 1 доллар, а фунта сыра — в 2 доллара, однако количество продаваемого хлеба и сыра (Q1 и Q2 соответственно, в тысячах) теперь описывается следующими уравнениями:

Q1 = 8 — P1 — 0,5P2, Q2 = 16 — 0,5P1 — P2.

Как и прежде, P1 — это цена буханки хлеба в долларах, а P2 — цена фунта сыра в долларах.

a) Поначалу компания L’Épicerie управляет магазинами La Boulangerie и La Fromagerie так, будто это две отдельные компании с независимыми управляющими, каждый из которых пытается максимизировать прибыль своего магазина. Определите количество, цену и прибыль этих двух подразделений L’Épicerie в соответствии с равновесием Нэша с учетом новых уравнений количества продаваемого хлеба и сыра.

b) Владельцы L’Épicerie считают, что могут получить более высокую общую прибыль посредством координации стратегий ценообразования в подразделениях своей компании в Яппи-Тауне. Какова цена хлеба и сыра, максимизирующая общую прибыль, при условии такого сговора? Какое количество каждого продукта продают магазины La Boulangerie и La Fromagerie, и какую прибыль получает каждый из них в отдельности?

c) Почему компании порой продают часть своей продукции по цене ниже себестоимости? Дайте логическое обоснование продажи продукции с убытком, воспользовавшись своим ответом из пункта b в качестве иллюстрации.

U4. Тележки для торговли кокосовым молоком из упражнения S7 снова установили на следующий день. Почти все условия прежние: тележки находятся в тех же местах; количество и распределение отдыхающих такое же; спрос тоже не изменился — одна порция кокосового молока. Единственное отличие — это неимоверно жаркий день, поэтому каждый отдыхающий несет более высокие транспортные издержки в размере 0,6 × d2. Как и прежде, тележка 0 продает кокосовое молоко всем отдыхающим, находящимся между точками 0 и x, а тележка 1 — всем отдыхающим между точками x и 1, где x — это местоположение отдыхающего, который платит одну и ту же общую цену, куда бы он ни отправился — к тележке 0 или 1. Однако теперь местоположение точки x определяется выражением

p0 + 0,6x2 = p1 + 0,6(1 — x)2.

Каждая тележка продолжает нести издержки в размере 0,25 доллара на один проданный кокос.

a) Для каждой тележки выведите формулу, описывающую количество обслуженных покупателей как функцию от p0 и p1. (Не забывайте, что тележка 0 обслуживает покупателей, находящихся между точками 0 и x, то есть просто x, а тележка 1 — между точками x и 1, или 1 — x. Иными словами, тележка 0 продает кокосовое молоко x покупателям, а тележка 1 — (1 — x) покупателям, где x и (1 — х) исчисляются в тысячах.)

b) Запишите функции прибыли для двух тележек и определите для них правила наилучших ответов.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг