U11.
Профессор предлагает Эльзе и ее 49 однокурсникам сыграть в новую игру. Как и прежде, все студенты одновременно и втайне друг от друга записывают на листках бумаги число от 0 до 100, после чего профессор вычисляет среднее выбранных чисел и обозначает его символом X. На этот раз студент, число которого окажется наиболее близким к 2/3 × (X + 9), получит 50 долларов. Если такое число выберут несколько студентов, они разделят приз поровну.a) Найдите симметричное равновесие Нэша в этой игре. То есть какое число станет наилучшим ответом на выбор всеми остальными игроками одного и того же числа?
b) Докажите, что выбор числа 5 — это доминируемая стратегия. (Подсказка: каким должно быть среднее значение X
для всей группы, чтобы ожидаемое число было равно 5?)c) Докажите, что выбор числа 90 — это доминируемая стратегия.
d) Определите все доминируемые стратегии.
e) Предположим, Эльза убеждена, что никто из ее однокурсников не выберет доминируемые стратегии, найденные в пункте d. Учитывая эти убеждения, какие стратегии не могут быть наилучшими ответами для Эльзы?
f) Какие стратегии в этой игре рационализируемые? Объясните логику ваших рассуждений.
U12 (дополнительное упражнение, требующее вычислений).
Вспомните игру с политической рекламной кампанией партий Л и П из раздела 1.В. В ней, когда партия Л тратит на рекламу x миллионов долларов, а партия R — y миллионов долларов, Л получает долю голосов x / (x + y), а П — y / (x + y). Мы также упоминали, что в такой модели может возникнуть два типа асимметрий между партиями. У одной партии (скажем, П) может быть возможность размещать рекламу по более низкой цене, или рекламный бюджет партии П может оказаться более эффективным с точки зрения привлечения голосов избирателей по сравнению с бюджетом партии Л. Для того чтобы учесть обе возможности, мы можем записать функции выигрышей двух партий следующим образом:
Эти функции выигрышей показывают, что у партии П есть преимущество в плане относительной эффективности ее рекламы при высоком значении k
и при низком значении c.a) Используйте эти функции выигрышей для получения функций наилучших ответов для партии П (которая выбирает y
) и Л (которая выбирает x).b) С помощью калькулятора или компьютера постройте график этих функций наилучших ответов при k
= 1 и c = 1. Какой результат обеспечивает преимущество в отношении затрат на рекламу?c) Сравните график из пункта b при k
= 1 и c = 1 с графиком при k = 2 и c = 1. Какой результат обеспечивает преимущество в плане эффективности рекламного бюджета?d) Найдите решения по функциям наилучших ответов, которые вы определили в пункте а, для x
и y, чтобы показать, что расходы на рекламные кампании в случае равновесия Нэша составляют
e) Пусть k
= 1 в равновесных уравнениях уровней расходов. Покажите, как эти два равновесных уровня расходов меняются в зависимости от значения c (то есть объясните знаки dx / dc и dy / dc). Тогда пусть c = 1; покажите, как эти два равновесных уровня расходов меняются в зависимости от значения k (то есть объясните знаки dx / dk и dy / dk). Подтверждают ли ваши ответы результаты, полученные вами в пунктах b и c данного упражнения?Приложение. Поиск значения, максимизирующего функцию
В данном приложении представлен простой метод выбора переменной X
для получения максимального значения переменной, которое является ее функцией, скажем Y = F(X). В наших примерах практического применения теории игр эта функция в большинстве случаев будет квадратичной, а именно Y = A + BX + CX2. Для таких функций мы выведем формулу X = B / (2C), используемую в данной главе. Мы сформулируем общую идею с помощью дифференциального исчисления, а затем предложим альтернативный подход, в котором это исчисление не применяется и который опирается исключительно на квадратичную функцию[84].Метод дифференциального исчисления проверяет значение X
на оптимальность посредством анализа того, что произойдет со значением функции в случае других значений по любую сторону от X. Если на самом деле X не максимизирует Y = F(X), то результатом увеличения или уменьшения X должно быть уменьшение значения Y. Исчисление предоставляет нам возможность быстро выполнить такую проверку.