Читаем Стратегические игры полностью

Мы надеемся, что метод с применением дифференциального исчисления покажется вам достаточно простым и вы сможете использовать его в нескольких местах книги, например в главе 11, посвященной коллективному действию. Однако если вы находите его слишком сложным, предлагаем альтернативный метод без исчисления, который работает в случае квадратичных функций. Перегруппируем члены уравнения, описывающего эту функцию, таким образом:

Y = A + BX–CX2 =




В окончательном варианте формулы X присутствует только в последнем члене, где содержащий это значение квадрат вычитается (помните, что C > 0). Все выражение максимизируется в случае, если его вычитаемый член становится минимальным, что и происходит, если X = B / 2C. Что и требовалось доказать!

Такой метод дополнения до полного квадрата работает для квадратичных функций, поэтому применим к большинству примеров, рассматриваемых в книге. Однако мы должны признать, что в нем присутствует некий элемент магии. Метод с использованием дифференциального исчисления носит более общий методологический характер, так что изучение основ дифференциального исчисления окупится сторицей.

Глава 6. Сочетание последовательных и одновременных ходов

* * *

В главе 3 мы рассматривали игры исключительно с последовательными ходами, а глава 4 и глава 5 посвящены играм только с одновременными ходами. Мы сформулировали концепции и методы анализа, применимые к чистым типам игр, такие как дерево игры и равновесие обратных рассуждений для игр с последовательными ходами, и таблицы выигрышей и равновесие Нэша в играх с одновременными ходами. Однако в реальной жизни многие стратегические ситуации содержат элементы взаимодействия обоих типов игр. Кроме того, хотя мы использовали дерево игры (экстенсивную форму) в качестве единственного метода иллюстрации игр с последовательными ходами и таблицу игры (стратегическую форму) как единственный метод иллюстрации игр с одновременными ходами, каждая из этих форм представления применима к играм любого типа.

В данной главе мы проанализируем многие из этих возможностей. Сначала покажем, как игры, сочетающие последовательные и одновременные ходы, решаются с помощью комбинации деревьев игр и таблицы выигрышей, а также подходящего объединения анализа равновесия обратных рассуждений и равновесия Нэша, затем рассмотрим последствия изменения характера взаимодействия в конкретной игре. В частности, проанализируем результат изменения правил игры в целях преобразования игры с последовательными ходами в игру с одновременными ходами и наоборот и изменения порядка ходов в игре с последовательными ходами. Эта тема позволяет сравнить равновесия, найденные посредством концепции обратных рассуждений в игре с последовательными ходами, с равновесиями, найденными с помощью концепции равновесия Нэша в одновременной версии той же игры. На основании такого сравнения мы расширим концепцию равновесий Нэша на игры с последовательными ходами. Оказывается, равновесие обратных рассуждений — частный случай равновесия Нэша, обычно называемый уточнением.

1. Игры с одновременными и последовательными ходами

Как уже неоднократно отмечалось ранее, большинство реальных игр, с которыми вы столкнетесь, будут состоять из множества более мелких компонентов, причем каждый может подразумевать игру либо с одновременными, либо с последовательными ходами, поэтому игра в целом потребует от вас знания обоих типов. Самый очевидный пример стратегического взаимодействия, содержащего как последовательную, так и одновременную составляющую, — это игры между двумя (или более) игроками, продолжающиеся на протяжении длительного периода. За год совместного проживания в комнате вы можете сыграть с соседом в ряд разных игр с одновременными ходами: ваши действия в любой из них зависят от истории вашего общения до нынешнего момента и ваших ожиданий в отношении дальнейших коммуникаций. Кроме того, любые спортивные соревнования, взаимодействие между конкурирующими компаниями в отрасли и политические отношения — все это последовательно связанные серии игр с одновременными ходами. Анализ таких игр подразумевает использование набора инструментов, представленных в главе 3 (дерево игры и равновесие обратных рассуждений), главе 4 и главе 5 (таблица выигрышей и равновесие Нэша)[85]. Единственное различие состоит в том, что фактический анализ усложняется по мере увеличения количества ходов и взаимодействий.

А. Двухэтапные игры и подыгры
Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг