Читаем Структура реальности. Наука параллельных вселенных полностью

По крайней мере одно из интуитивных представлений Гёделя о доказательствах оказалось ошибочным; к счастью, это никак не влияет на доказательства его теорем. Он унаследовал его в неизменной форме из предыстории греческой математики, и оно не вызывало сомнений ни у одного поколения математиков до тех пор, пока в 1980-х годах открытия в области квантовой теории вычислений не доказали его ложность. Это представление заключается в том, что доказательство — это определённый тип объекта, а именно, последовательность утверждений, которая подчиняется правилам вывода. Я уже говорил о том, что доказательство лучше рассматривать не как объект, а как процесс, разновидность вычислений. Однако в классической теории доказательств или вычислений фундаментальной разницы между ними нет по следующей причине. Если можем осуществить процесс доказательства, то, прикладывая лишь немного дополнительных усилий, можно вести запись всего важного, что происходит во время этого процесса. Эта запись, будучи физическим объектом, составит доказательство в смысле последовательности утверждений. И наоборот, если бы у нас была такая запись, мы могли бы прочитать её, проверить, удовлетворяет ли она правилам вывода, и в ходе этого процесса мы докажем наше заключение. Другими словами, в классическом случае переход между процессом доказательства и объектом доказательства — это всегда легкорешаемая задача.

Теперь давайте рассмотрим некоторое математическое вычисление, которое является трудным для всех классических компьютеров, но предположим, что квантовый компьютер легко может выполнить это вычисление, задействовав интерференцию между, скажем, 10500 вселенными. Чтобы сделать тезис более чётким, пусть вычисление будет таким, что ответ после его получения (в отличие от результата разложения на множители) невозможно проверить с помощью легкоосуществимых вычислений. Процесс программирования квантового компьютера для выполнения вычислений такого рода, запуск программы и получение результата составляет доказательство того, что математическое вычисление даёт именно этот конкретный результат.

Но в этом случае не существует способа записать всё, что произошло в процессе доказательства, потому что большая часть всего этого протекала в других вселенных, а измерение состояния вычисления изменило бы интерференционные свойства и тем самым нарушило бы корректность доказательства. Таким образом, создание старомодного объекта доказательства оказывается невозможным; более того, во Вселенной, как мы её знаем, и близко нет такого количества материала, чтобы создать подобный объект, поскольку в этом доказательстве больше шагов, чем существует атомов в известной Вселенной. Этот пример показывает, что возможность квантовых вычислений делает эти два понятия доказательства не эквивалентными. Интуиция доказательства как объекта не охватывает все способы, с помощью которых можно доказать математическое утверждение в реальности.

И вновь мы видим неадекватность традиционного математического метода достижения уверенности попытками устранения из нашей интуиции всех возможных источников неопределённости и ошибок, пока не останется одна только самоочевидная истина. Именно так поступал Гёдель. Именно так поступали Чёрч, Пост и особенно Тьюринг, когда пытались интуитивно постичь свои универсальные модели вычисления. Тьюринг надеялся, что его модель с абстрактной бумажной лентой настолько проста, настолько открыта и хорошо определена, что не зависит ни от каких допущений относительно физики, которые можно было бы в принципе опровергнуть, и, следовательно, она может стать фундаментом абстрактной теории вычислений, независимой от лежащей в её основе физики. «Он считал, — как однажды сказал Фейнман, — что он понял бумагу». Но он ошибался. Реальная, квантово-механическая бумага очень сильно отличается от абстрактного материала, используемого машиной Тьюринга. Машина Тьюринга является всецело классической, она не принимает во внимание возможность того, что в различных вселенных на бумаге могут быть написаны различные символы, и что они могут интерферировать друг с другом. Безусловно, искать интерференцию между различными состояниями бумажной ленты непрактично. Но дело в том, что интуиция Тьюринга, из-за того, что в ней содержались ложные допущения из классической физики, заставила его абстрагироваться от некоторых вычислительных свойств его гипотетической машины — тех самых свойств, которые он намеревался сохранить. Именно поэтому результирующая модель вычисления оказалась неполной.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература