Читаем Структура реальности. Наука параллельных вселенных полностью

Даже если бы хоть какая-то физическая или математическая интуиция была врождённой, это не придавало бы ей какого-то особого авторитета. Врождённую интуицию невозможно считать суррогатом «воспоминаний» Платона о мире форм, поскольку общеизвестно, что многие интуитивные представления, которые случайно развились у людей в процессе эволюции, просто ложны. Например, человеческий глаз и управляющее им «программное обеспечение» неявным образом воплощают ложную теорию о том, что жёлтый свет состоит из смеси красного и зелёного света (в смысле, что жёлтый свет даёт нам точно такое же ощущение, как и смесь красного и зелёного света). В реальности все три типа света имеют разные частоты и не могут быть созданы посредством смешивания света других частот. Тот факт, что смесь красного и зелёного света кажется нам жёлтым светом, не имеет ничего общего со свойствами света, но связан со свойствами наших глаз. Это результат компромисса, имевшего место на каком-то древнем этапе эволюции наших далёких предков. Конечно, возможно (хотя я в это не верю), что геометрия Евклида или логика Аристотеля каким-то образом встроены в структуру нашего мозга, как считал философ Иммануил Кант. Но из этого логически не следует их истинность. Даже если представить ещё более невероятный случай, что у нас есть врождённые интуитивные представления, от которых мы не в состоянии избавиться, такая интуиция всё равно не будет необходимой истиной.

Таким образом, ткань реальности имеет более однородную структуру, чем это могло бы быть, окажись математическое знание надёжно верифицируемым, а, значит, иерархическим, как считалось традиционно. Математические сущности являются частью структуры реальности, поскольку они сложны и автономны. Создаваемая ими реальность некоторым образом похожа на царство абстракций, которое рисуют Платон и Пенроуз: будучи по определению неощутимыми, они объективно существуют и имеют свойства, независимые от законов физики. Однако именно физика позволяет нам приобрести знание об этом царстве. И она накладывает строгие ограничения. Если в физической реальности постижимо всё, то постижимые математические истины составляют бесконечно малое меньшинство тех, которые в точности соответствуют каким-то физическим истинам — вроде того факта, что при определённых манипуляциях определёнными символами, записанными чернилами на бумаге, появятся другие определённые символы. Иначе говоря, это и есть те истины, которые можно представить в виртуальной реальности. У нас нет другого выбора, кроме как принять то, что непостижимые математические сущности тоже реальны, так как они возникают неустранимым образом в наших объяснениях постижимых сущностей.

Существуют физические объекты, например, пальцы, компьютеры и мозг, поведение которых может моделировать поведение определённых абстрактных объектов. Тем самым структура физической реальности открывает нам окно в мир абстракций. Это очень узкое окно, оно предоставляет только ограниченный обзор. Некоторые из структур, которые мы видим из него, например, натуральные числа или правила вывода классической логики, кажутся важными или «фундаментальными» для абстрактного мира, так же как глубокие законы природы фундаментальны для физического мира. Но эта видимость может ввести в заблуждение, поскольку в действительности мы видим только то, что некоторые абстрактные структуры фундаментальны по отношению к нашему пониманию абстракций. У нас нет никакой причины считать, что эти структуры объективно важны в абстрактном мире. Просто некоторые абстрактные сущности ближе, чем другие, и их проще увидеть из нашего окна.

<p>Терминология</p>

Математика — изучение абсолютно необходимых истин.

Доказательство — способ установления истинности математических утверждений.

Традиционное определение: последовательность утверждений, которая начинается с некоторых посылок, заканчивается желаемым выводом и удовлетворяет определённым «правилам вывода».

Лучшее определение: вычисление, моделирующее свойства некоторой абстрактной сущности, результат которого устанавливает, что абстрактная сущность обладает данным свойством.

Математическая интуиция (традиционное определение) — высший самоочевидный источник обоснования математического рассуждения.

В реальности: множество теорий (осознанных и неосознанных) о поведении определённых физических объектов, которое моделирует поведение интересных абстрактных сущностей.

Интуиционизм — доктрина, состоящая в том, что все рассуждения об абстрактных сущностях ненадёжны, кроме того случая, когда они основаны на прямой самоочевидной интуиции. Это математическая версия солипсизма.

Десятая проблема Гильберта — «раз и навсегда установить надёжность математических методов», найдя набор правил вывода, достаточный для всех корректных доказательств, и затем доказать непротиворечивость этих правил в соответствии с их собственными стандартами.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература