Читаем Структура реальности полностью

Допустим, что мы намеренно модифицируем программу, передающую геометрию Евклида, так, что генератор виртуальной реальности по-прежнему будет передавать круги достаточно хорошо, но менее, чем совершенно. Разве мы не смогли бы сделать какой-либо вывод о совершенных кругах, ощущая эту несовершенную передачу? Это полностью зависело бы от того, знали бы мы, в каких отношениях была изменена программа или нет. Если бы мы это знали, мы могли бы с определенностью решить (за исключением грубых ошибок и т. д.), какие аспекты ощущений, полученных нами внутри машины, представляли совершенные круги точно, а какие неточно. И в этом случае знание, которое мы приобрели там, было бы так же надежно, как и любое знание, которое мы приобрели бы, используя правильную программу.

Представляя круги, мы осуществляем передачу в виртуальной реальности почти такого же рода в своем мозге. Причина того, почему этот способ мышления о кругах не бесполезен, состоит в том, что мы можем создать точные теории о том, какими свойствами совершенных кругов обладают воображаемые нами круги, а какими нет.

Используя совершенную передачу в виртуальной реальности, мы могли бы получить впечатление о шести идентичных кругах, которые касаются кромки седьмого идентичного им круга в плоскости, не перекрывая друг друга. Это впечатление при подобных обстоятельствах было бы эквивалентно точному доказательству возможности такой ситуации, потому что геометрические свойства переданных форм были бы абсолютно идентичны геометрическим свойствам абстрактных форм. Но такой вид «практического» взаимодействия с совершенными формами не способен дать всестороннее знание геометрии Евклида. Большая часть интересных теорем относится не к одной геометрической форме, а к бесконечным классам геометрических форм. Например, сумма углов любого треугольника Евклида равна 180°. Мы можем измерить отдельные треугольники с совершенной точностью в виртуальной реальности, но даже в виртуальной реальности мы не можем измерить все треугольники, и поэтому мы не можем проверить теорему.

Как же мы можем ее проверить? Мы доказываем ее. Традиционно доказательство определяют как последовательность утверждений, удовлетворяющих самоочевидным правилам вывода, но чему физически эквивалентен процесс доказательства? Чтобы доказать утверждение о бесконечно большом количестве треугольников сразу, мы исследуем определенные физические объекты (в данном случае символы), которые обладают общими свойствами с целым классом треугольников. Например, когда при надлежащих обстоятельствах мы наблюдаем символы «АВС DEF» (т. е. «треугольник АВС конгруэнтен треугольнику DEF»), мы делаем вывод, что все треугольники из какого-то определенного конкретным образом класса всегда имеют ту же самую форму, что и соответствующие им треугольники из другого класса, определенного иначе. «Надлежащие обстоятельства», которые придают этому выводу статус доказательства, заключаются, говоря языком физики, в том, что символы появляются на странице под другими символами (некоторые из которых представляют аксиомы геометрии Евклида), и порядок появления символов соответствует определенным правилам, а именно, правилам вывода.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука