Михаил занимает 50-е место среди самых быстрых бегунов и 50-е – среди самых медленных бегунов в своей школе. Сколько бегунов в школе, где учится Михаил, при условии, что все они бегают с разной скоростью?
99. Если Михаил пятидесятый среди самых быстрых бегунов, то он должен быть номером 50 в последовательности 1, 2, 3…, 50. Чтобы быть пятидесятым среди самых медленных, он должен быть номером 50 в последовательности 50, 51, 52…, 99, в силу того, что от 50 до 99 включительно имеется пятьдесят номеров.
В XIX веке один учитель задал своим ученикам вычислить сумму всех целых чисел от единицы до ста. Компьютеров и калькуляторов тогда еще не было, и ученики принялись добросовестно складывать числа. И только один ученик нашел правильный ответ всего за несколько секунд. Им оказался Карл Фридрих Гаусс – будущий великий математик. Как он это сделал?
Он выделил 49 пар чисел: 99 и 1, 98 и 2, 97 и 3… 51 и 49. В сумме каждая пара чисел равнялась ста, и оставалось два непарных числа 50 и 100. Следовательно, 49х100+50+100=5050.
Пройдите лабиринт
Пройдите лабиринт
На столе лежат девять монет. Одна из них – фальшивая. Как при помощи двух взвешиваний можно найти фальшивую монету? (Фальшивая монета легче настоящих.)
Первое взвешивание: на каждую чашку весов кладем по три монеты. Если весы уравновешены, то для второго взвешивания берутся две из трех оставшихся монет. Если фальшивая монета на весах, то ясно, на какой она чашке весов. Если же весы уравновешены, то фальшивой является оставшаяся не взвешенная монета. Если при первом взвешивании одна из чашек перевешивает другую, то фальшивая монета находится среди монет, вес которых оказывается меньше. Тогда вторым взвешиванием устанавливаем, какая из монет фальшивая.
В одном городе построили новый район из 100 домов. Мастера по изготовлению табличек изготовили и привезли пачку новых табличек с нумерацией домов от 1 до 100. Сосчитайте количество всех цифр 9 встречающихся в этих табличках (цифры 9 и 6 являются разными цифрами).
Правильный ответ – 20 девяток.
Винодел обычно продает свое вино по 30 и по 50 литров и использует для этого кувшины только такого размера. Один из покупателей захотел купить 10 литров. Как винодел отмерил ему 10 литров, пользуясь своими кувшинами?
Сначала он наполнил 30-литровый кувшин и вылил его содержимое в 50-литровый. Потом опять наполнил 30-литровый и долил до полного заполнения в 50-литровый. В результате у него в кувшине останется 10 литров.
При издании книги потребовалось 2 775 цифр того, чтобы пронумеровать ее страницы. 0 Сколько страниц в книге?
На первые 9 страниц требуется 9 цифр. С 10-й по 99-ю страницу (90 страниц) требуется 90х2=180 цифр. С 100-й по 999-ю страницу (900 страниц) требуется 900х3=2700 цифр (по 300 цифр на каждую сотню страниц с трехзначной нумерацией). Следовательно, на 999 страниц необходимо 2700+180+9=2889 цифр. Мы перебрали (2889–2775)/3=38 страниц. Итого: 999-38=961 страница была в книге.
Для того чтобы получить краску оранжевого цвета, необходимо смешать краски желтого цвета (6 частей) и красного цвета (2 части). Сколько грамм краски оранжевого цвета можно получить (максимально), имея в наличии 3 грамма желтой и 3 грамма красной краски?
Из условия задачи видно, что желтой краски требуется в 3 раза больше, чем красной. Следовательно, имея в наличии 3 грамма желтой краски, необходимо взять 1 грамм красной краски. То есть оранжевой краски при смешивании получиться 4 грамма.
Пройдите лабиринт
Пройдите лабиринт
Попробуйте понять, по какому правилу сформирована нижеуказанная числовая последовательность: 1 11 21 1211 111221 312211 13112221 1113213211…
Ответ:
Каждое следующее число описывает одно предыдущее. Например: число во второй строке «11» говорит, что в предыдущей строке одна единица (1(одна)1(единица)); число в третьей строке «21» говорит, что в предыдущей строке две единицы или 2(две)1(единицы); число в четвертой строке «1211» говорит, что в предыдущей строке одна двойка и одна единица или 1(одна)2(двойка)1(одна)1(единица). И так далее.
Представьте, что у вас есть большой бочонок кваса. Кроме этого у вас есть две пустые бутыли на 3 и 5 литров. Как при помощи этих бутылей отмерить ровно один литр кваса?
Сначала из бочонка наполняем квасом до полна бутыль на 3 литра, далее выливаем из 3-литровой бутыли все 3 литра в 5-литровую бутыль. Потом снова из бочонка наливаем квас дополна в 3-литровую бутыль. Затем из нее выливаем квас в пятилитровую бутыль до ее заполнения. И в итоге в 3-литровой бутыли останется кваса ровно 1 литр.